首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Organic thin‐film‐transistor (OTFT) technologies have been developed to achieve a flexible backplane for driving full‐color organic light‐emitting diodes (OLEDs) with a resolution of 80 ppi. The full‐color pixel structure can be attained by using a combination of top‐emission OLEDs and fine‐patterned OTFTs. The fine‐patterned OTFTs are integrated by utilizing an organic semiconductor (OSC) separator, which is an insulating wall structure made of an organic insulator. Organic insulators are actively used for the OTFT integration, as well as for the separator, in order to enhance the mechanical flexibility of the OTFT backplane. By using these technologies, active‐matrix OLED (AMOLED) displays can be driven by the developed OTFT backplane even when they are mechanically flexed.  相似文献   

2.
We developed flexible displays using back‐channel‐etched In–Sn–Zn–O (ITZO) thin‐film transistors (TFTs) and air‐stable inverted organic light‐emitting diodes (iOLEDs). The TFTs fabricated on a polyimide film exhibited high mobility (32.9 cm2/Vs) and stability by utilization of a solution‐processed organic passivation layer. ITZO was also used as an electron injection layer (EIL) in the iOLEDs instead of conventional air‐sensitive materials. The iOLED with ITZO as an EIL exhibited higher efficiency and a lower driving voltage than that of conventional iOLEDs. Our approach of the simultaneous formation of ITZO film as both of a channel layer in TFTs and of an EIL in iOLEDs offers simple fabrication process.  相似文献   

3.
We have developed an inkjet process for laying down an organic semiconductor layer in organic thin‐film transistors (OTFTs). The organic semiconductor crystallinity was improved by adjusting the contact angles of the bank, the gate insulator, and the source/drain electrodes. The threshold voltage of the OTFT was controlled by means of several surface treatments of the silicon dioxide gate insulator. The OTFTs showed a high mobility of 2.5 cm2/Vs and uniform threshold voltages of ?0.4 ± 0.7 V. We also fabricated a 4‐in., 80‐ppi active‐matrix organic light‐emitting diode on a glass substrate that showed good luminance uniformity and high moving picture quality.  相似文献   

4.
An 8‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display driven by oxide thin‐film transistors (TFTs) has been developed. In‐Ga‐Zn‐O (IGZO)‐TFTs used as driving devices were fabricated directly on a plastic film at a low temperature below 200 °C. To form a SiOx layer for use as the gate insulator of the TFTs, direct current pulse sputtering was used for the deposition at a low temperature. The fabricated TFT shows a good transfer characteristic and enough carrier mobility to drive OLED displays with Video Graphic Array pixels. A solution‐processable photo‐sensitive polymer was also used as a passivation layer of the TFTs. Furthermore, a high‐performance phosphorescent OLED was developed as a red‐light‐emitting device. Both lower power consumption and longer lifetime were achieved in the OLED, which used an efficient energy transfer from the host material to the guest material in the emission layer. By assembling these technologies, a flexible AMOLED display was fabricated on the plastic film. We obtained a clear and uniform moving color image on the display.  相似文献   

5.
Abstract— An organic thin‐film‐transistor (OTFT) backplane has been fabricated by using a solution‐processed organic semiconductor (OSC) and organic insulators. The OSC, a peri‐xanthenoxanthene derivative, provides a mobility of 0.5 cm2/V‐sec. These organic materials enhance the mechanical flexibility of the backplane. The developed backplane successfully drives a 13.3‐in. flexible UXGA electrophoretic display that can operate when bent at a radius of 5 mm.  相似文献   

6.
Abstract— A high‐performance bottom‐contact organic‐thin‐film transistor (OTFT) array on plastic using a self‐organized process has been developed. The effect of octadecyltrichlorosilane (OTS) treatment on the poly‐4‐vinylphenol (PVP) gate insulator on the performance of OTFT on plastic has been studied. The OTFT without OTS exhibited a field‐effect mobility of 0.1‐cm2/V‐sec on/off current ratio of >107. On the other hand, the OTFT with OTS treatment exhibited a field‐effect mobility of 1.3 cm2/V‐sec and an on/off current ratio of >108. This is mainly due to the enhancement in grain size from less than 10 μm to more than 20 μm.  相似文献   

7.
To come out with a successful organic light‐emitting diode (OLED) lighting business, it is very important to have clear differentiation of OLED from LEDs. Flexible OLED has merits, such as capability to be mounted on the curved wall, which is not easy for LEDs to achieve the feature. There are several approaches to make flexible OLEDs especially among those plastic barrier films that can bring high level of flexibility, which could not be achieved by any conventional lighting method. In this paper, barrier films with various water vapor transmission rate values, including 10? 6 order, are applied, and the conditions to have almost no dark spot growth under 85 °C and 85% high temperature/humidity test are shown. Flexible OLED panels are manufactured with the world's first roll‐to‐roll equipment using plastic barrier film.  相似文献   

8.
In this study, white organic electroluminescent devices with microcavity structures were developed. A flexible high‐resolution active‐matrix organic light‐emitting diode display with low power consumption using red, green, blue, and white sub‐pixels formed by a color‐filter method was fabricated. In addition, a side‐roll touch display was developed in combination with a capacitive flexible touch screen.  相似文献   

9.
Abstract— A 5.8‐in. wide‐QQVGA flexible color active‐matrix organic light‐emitting‐diode (AMOLED) display consisting of organic thin‐film transistors (OTFTs) and phosphorescent OLEDs was fabricated on a plastic film. To reduce the operating voltage of the OTFTs, Ta2O5 with a high dielectric constant was employed as a gate insulator. Pentacene was used for the semiconductor layer of the OTFTs. This layer was patterned by photolithography and dry‐etched using a dual protection layer of poly p‐xylylene and SiO2 film. Uniform transistor performance was achieved in the OTFT backplane with QQVGA pixels. The RGB emission layers of the pixels were formed by vacuum deposition of phosphorescent small molecules. The resulting display could clearly show color moving images even when it was bent and operated at a low driving voltage (below 15 V).  相似文献   

10.
Abstract— High‐performance and excellent‐uniformity thin‐film transistors (TFTs) having bottom‐gate structures are fabricated using an amorphous indium‐gallium‐zinc‐oxide (IGZO) film and an amorphous‐silicon dioxide film as the channel layer and the gate insulator layer, respectively. All of the 94 TFTs fabricated with an area 1 cm2 show almost identical transfer characteristics: the average saturation mobility is 14.6 cm2/(V‐sec) with a small standard deviation of 0.11 cm2/(V‐sec). A five‐stage ring‐oscillator composed of these TFTs operates at 410 kHz at an input voltage of 18 V. Pixel‐driving circuits based on these TFTs are also fabricated with organic light‐emitting diodes (OLED) which are monolithically integrated on the same substrate. It is demonstrated that light emission from the OLED cells can be switched and modulated by a 120‐Hz ac signal input. Amorphous‐IGZO‐based TFTs are prominent candidates for building blocks of large‐area OLED‐display electronics.  相似文献   

11.
Abstract— Positive‐current‐bias (PB) instability and negative‐bias—light‐illumination (NBL) instability in amorphous‐In—Ga—Zn—O (a‐IGZO) thin‐film transistors (TFTs) have been examined. The channel‐ thickness dependence indicated that the Vth instability caused by the PB stress is primarily attributed to defects in the bulk a‐IGZO region for unannealed TFTs and to those in the channel—gate‐insulator interface for wet‐annealed TFTs. The interface and bulk defect densities (Dit and Nss, respectively) are Dit = 4.8 × 1011 cm?2/eV and Nss = 7.0×1016 cm?3/eV for the unannealed TFT, which increased to 5.2×1011 cm?2/eV and 9.8×1016 cm?3/eV, respectively, by the PB stress test. These are reduced significantly to Dit = 0.82×1011 cm?2/eV and Nss = 3.2×1016 cm?3/eV for the wet‐annealed TFTs and are unchanged by the PB stress test. It was also found that the photo‐response of a‐IGZO TFTs begins at 2.3 eV of photon excitation, which corresponds to subgap states observed by photoemission spectroscopy. The origin of the NBL instability for the wet‐annealed TFTs is attributed to interface effects and considered to be a trap of holes at the channel‐gate—insulator interface where migration of the holes is enhanced by the electric field formed by the negative gate bias.  相似文献   

12.
Abstract— A novel active‐matrix organic light‐emitting‐diode (AMOLED) display employing a new current‐mirror pixel circuit, which requires four‐poly‐Si TFTs and one‐capacitor and no additional signal lines, has been proposed and sucessfully fabricated. The experimental results show that a new current mirror can considerably compensate luminance non‐uniformity and scale down a data current more than a conventional current‐mirror circuit in order to reduce the pixel charging time and increase the minimum data current. Compared with a conventional two‐TFT pixel, the luminance non‐uniformity induced by the grain boundaries of poly‐Si TFTs can be decreased considerably from 41% to 9.1%.  相似文献   

13.
Abstract— The image quality of an OTFT‐driven flexible AMOLED display has been improved by enhancing the performance of OTFTs and OLEDs. To reduce the operating voltage of OTFTs on a plastic film, Ta2O5 with a high dielectric constant was used as a gate insulator. The organic semiconductor layer of the OTFT was successfully patterned by a polymer separator, which is an isolating wall structure using an organic material. The OTFT performance, such as its current on/off ratio, carrier mobility, and spatial uniformity on the backplane, was enhanced. A highly efficient phosphorescent OLED was used as a light‐emission device. A very thin molybdenum oxide film was introduced as a carrier‐injection layer on a pixel electrode to reduce the operating voltage of the OLED. After an OTFT‐driven flexible AMOLED display was fabricated, the luminance and uniformity on the display was improved. The fabricated display also showed clear moving images, even when it was bent at a low operating voltage.  相似文献   

14.
Abstract— High‐performance solution‐processed oxide‐semiconductor (OS) thin‐film transistors (TFTs) and their application to a TFT backplane for active‐matrix organic light‐emitting‐diode (AMOLED) displays are reported. For this work, bottom‐gated TFTs having spin‐coated amorphous In‐Zn‐O (IZO) active layers formed at 450°C have been fabricated. A mobility (μ) as high as 5.0 cm2/V‐sec, ?0.5 V of threshold voltage (VT), 0.7 V/dec of subthreshold swing (SS), and 6.9 × 108 of on‐off current ratio were obtained by using an etch‐stopper (ES) structure TFT. TFTs exhibited uniform characteristics within 150 × 150‐mm2 substrates. Based on these results, a 2.2‐in. AMOLED display driven by spin‐coated IZO TFTs have also been fabricated. In order to investigate operation instability, a negative‐bias‐temperature‐stress (NBTS) test was carried out at 60°C in ambient air. The IZO‐TFT showed ?2.5 V of threshold‐voltage shift (ΔVT) after 10,800 sec of stress time, comparable with the level (ΔVT = ?1.96 V) of conventional vacuum‐deposited a‐Si TFTs. Also, other issues regarding solution‐processed OS technology, including the instability, lowering process temperature, and printable devices are discussed.  相似文献   

15.
Phototherapeutics is both safely noninvasive and can be employed to treat a variety of sites and diseases. Current rigid and bulky conventional light sources, such as LED or laser‐based phototherapy devices, are difficult to transport and use for regular irradiation treatments. To solve this problem, flexible organic light‐emitting diode (OLED) light sources are the best candidates, and if applied very thinly as a skin‐like platform, the ultimate attachable phototherapeutics can be realized. We demonstrated a very thin flexible OLED‐based photonic skin with a total thickness of 6 μm for application in attachable phototherapeutics. It was optimized by controlling the peak wavelengths (600–700 nm) and irradiation interval of the flexible OLED thus improving the regeneration effect of the artificial skin by up to 70%. In addition, when the flexible OLED‐based photonic skin was attached to a dressing film before being applied to the skin, it delivered the same electro‐optical properties, while protecting against external contamination. The OLED skin on the dressing film had an operating lifetime of more than 100 h. These results confirmed the applicability of flexible OLED‐based photonic skin to various light treatment areas, such as surgical wounds that require periodic irradiation.  相似文献   

16.
Abstract— A low‐cost active‐matrix backplane using non‐laser polycrystalline silicon (poly‐Si) having inverse‐staggered TFTs with amorphous‐silicon (a‐Si) n+ contacts has been developed. The thin‐film transistors (TFTs) have a center‐offset gated structure to reduce the leakage current without scarifying the ON‐currents. The leakage current of the center‐offset TFTs at Vg = ?10 V is two orders of magnitude lower than those of the non‐offset TFTs. The center‐offset length of the TFTs was 3 μm for both the switching and driving TFTs. A 2.2‐in. QQVGA (1 60 × 1 20) active‐matrix organic light‐emitting‐diode (AMOLED) display was demonstrated using conventional 2T + 1C pixel circuits.  相似文献   

17.
Abstract— A flexible color LCD panel driven by organic TFTs (OTFTs) was successfully demonstrated. A pentacene OTFT with an anodized Ta2O5 gate insulator, which can be operated at low voltage, was developed. In order to improve the electrical performance of the OTFT, the gate insulator was surface treated by processes such as O2 plasma, UV light irradiation, and hexamethyldisilane treatments. The fabricated OTFT exhibited a mobility of 0.3 cm2/V‐sec and a current on/off ratio of 107 with a low operating drain voltage of ?5 V. A fast‐response‐time flexible ferroelectric LCD, which contains polymer networks and walls, was integrated with the OTFTs by using a lamination and a printing technique. As a result, color images were achieved on the fabricated panel by using a field‐sequential‐color method at a low driving voltage of less than 15 Vpp.  相似文献   

18.
Abstract— A liquid‐crystal panel integrated with a gate driver and a source driver by using amorphous In—Ga—Zn‐oxide TFTs was designed, prototyped, and evaluated. By using the process of bottom‐gate bottom‐contact (BGBC) TFTs, amorphous In—Ga—Zn‐oxide TFTs with superior characteristics were provided. Further, for the first time in the world, a 4‐in. QVGA liquid‐crystal panel integrated with a gate driver and a source driver was developed by using BGBC TFTs formed from an oxide semiconductor. By evaluating the liquid‐crystal panel, its functionality was successfully demonstrate. Based on the findings, it is believed that the novel BGBC amorphous In—Ga—Zn‐oxide TFT will be a promising candidate for future large‐screen backplanes having high definition.  相似文献   

19.
We developed a high‐performance 3.4‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display with remarkably high resolution using an oxide semiconductor in a backplane, by applying our transfer technology that utilizes metal separation layers. Using this panel, we also fabricated a prototype of a side‐roll display for mobile uses. In these AMOLED displays, a white OLED combined with a color filter was used in order to achieve remarkably high resolution. For the white OLED, a tandem structure in which a phosphorescent emission unit and a fluorescent emission unit are serially connected with an intermediate layer sandwiched between the emission units was employed. Furthermore, revolutionary technologies that enable a reduction in power consumption in both the phosphorescent and fluorescent emission units were introduced to the white tandem OLED.  相似文献   

20.
In an effort to create a truly flexible and wearable display having a flexible battery as well as a flexible organic light‐emitting diode panel and a flexible printed circuit, a flexible lithium‐ion battery has been developed, and a prototype wrist‐wearable or arm‐wearable display has been fabricated. Owing to improvements in the internal structure and exterior of the lithium‐ion battery, no remarkable changes in charge and discharge curves and the internal state of the electrodes were observed even after conducting a 10,000‐cycle bending test. Therefore, this flexible lithium‐ion battery prototype demonstrated remarkable bending resistance. Thus, we succeeded in fabricating a truly flexible and wearable display comprised of a flexible organic light‐emitting diode panel, a flexible printed circuit, and a flexible battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号