首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
破岩钻井方法及高压水射流破岩机理研究   总被引:6,自引:4,他引:6  
简要分析回顾了破岩和钻井方法的发展,论述了激光钻井和高压水射流钻井的发展潜力。阐明了高压水射流钻井技术已具备工业应用的可行性。分析了高压水射流破岩机理研究中的关键问题及解决途径,介绍了利用数值模拟和试验相结合的方法研究高压水射流破岩机理所取得的一些突破性进展,提出了建立和完善高压水射流破岩理论体系、发展水射流钻井技术的研究方向。  相似文献   

2.
高压淹没水射流破岩实验研究   总被引:6,自引:0,他引:6  
利用高压淹没射流装置对几种岩石进行了破碎实验,通过对实验结果的分析讨论,得出了喷嘴出口动压力、喷嘴直径和喷距与破岩效果之间的关系。  相似文献   

3.
基于SPH算法的高压水射流破岩机理数值模拟   总被引:2,自引:0,他引:2  
应用ANSYS/LS-DYNA软件,采用SPH算法模拟了高压水射流破岩的三维非线性冲击动力学问题,得到了破岩过程中能量转化关系和射流冲击力时程曲线,同时也获得了水射流破碎岩石的时序演化过程,较好地反映了水射流破岩的真实物理过程,证明了该仿真方法的可行性,所得结论将为水力参数优选以及钻头喷嘴设计提供一定的参考。  相似文献   

4.
在阐述机械水力联合破岩的基本原理的基础上,对高压水射流提高机械水力联合破岩速度的机理进行了理论上的探讨。同时,设计了专门的试验用钻头。在室内试验条件下,研究了高压水射流对联合破岩效果的影响,得出了一些具有参考价值的结论。  相似文献   

5.
针对应用于开发低渗透性、裂缝性和薄储层等油气藏的高压水射流技术,基于推导的水射流破岩的临界速度,设计了一种用于油田井下破岩的自进式高压水射流喷头,并应用湍流模型对喷头内部的水射流流场进行数值模拟分析,应用动力学模型对水射流破岩过程进行数值模拟分析。结果表明,入口压力30MPa时,喷头产生的水射流达到了破岩所需速度,能够实现破岩,并且破岩产生的破碎坑的内切圆直径大于喷头的最大外径,可实现自进式破岩,而且破岩过程中水射流速度是"脉动下降"的。这也说明所设计的喷头用于破岩是可行的,这种设计方法、建模方法和数值模拟方法在分析高压水射流破岩方面是可行的。  相似文献   

6.
根据连续介质力学理论,导出了脉冲水射流破岩系统的控制方程。并运用瞬时最小势能原理,建立了脉冲水射流破岩的有限元基本列式和离散方程。数值计算的结果较为真实地反映了脉冲射流破岩过程中岩石的动态响应的演化过程,揭示了射流破岩过程中的机理。所得结论与相关试验规律吻合良好,探索了一种研究水射流破岩规律的有效方法,对脉冲水射流破岩的深入研究和应用具有重要的意义。  相似文献   

7.
高压水射流破岩钻孔的实验研究   总被引:13,自引:1,他引:13  
高压水射流很早就被证明是一种潜力巨大、高效及方便的破岩钻孔工具和方法。但单喷嘴普通射流的冲击破碎面积小,喷嘴旋转系统不可靠性,限制了它的实际应用。本文根据石油钻井技术发展的需要,用特殊方法设计出带有导向元件的喷嘴,调制出旋转射流,在室内进行了一系列实验。实验结果表明,该旋转射流可以产生足够大的冲击面积,钻出比喷嘴直径大40多倍的孔眼。其破若以剪切破碎为主,破岩效率是普通喷嘴的数10倍,破岩门限压力仅为普通射流的1/2左右。地面钻孔试验结果,证实了旋转射流具有破岩成孔能力。  相似文献   

8.
旋转水射流破岩钻孔机理研究   总被引:2,自引:0,他引:2  
基于水射流破岩钻孔过程中影响因素和流固耦合作用的分析,运用连续损伤力学和细观损伤力学理论,建立了适用于水射流破岩全过程的岩石损伤模型。依据所建立的损伤模型,利用非线性动力有限元方法,对旋转水射流破岩钻孔过程的过程进行了模拟,其中岩石损伤场的求解采用解耦的方法。计算结果与试验一致,表明旋转射流具有较强的破岩能力,其原因是旋转射流的质点具有三维速度,破岩时以倾斜冲击为主,易于在岩石表面形成拉伸和剪切破坏,回流的干扰较少。破岩过程首先是形成一环形破碎带,然后沿径向和轴向发展,所形成的破碎坑呈内凸锥状。旋转射流破岩的优势在于破碎面积大、效率高、破岩比能低,因而旋转水射流能够钻出大直径的岩石孔眼。  相似文献   

9.
袁建强 《河南石油》1995,9(1):37-42
在阐述机械水力联合破岩的基本原理的基础上对高压水射流提高机械水力联合破岩速度的机理进行了理论上的探讨,同时,设计了专门的试验用钻头,在室内试验条件下,研究了高压水射流对联合破岩效果的影响,得出了一些具有参考价值的结论。  相似文献   

10.
双射流喷嘴破岩扩孔的实验研究   总被引:10,自引:1,他引:9  
利用旋转射流破岩效率高、小水眼可钻出大孔的特点,并结合锥形喷嘴有效喷距较长的特点,设计了一种新型喷嘴——双射流喷嘴。室内试验结果表明,射流喷嘴外旋转角30°左右破岩效果最佳,破岩面积则随着角度增大而增大;双射流喷嘴最佳喷距约为当量直径的5~8倍;在短喷距情况下,双射流喷嘴与普通锥形喷嘴相比,破岩效果相近,但破岩面积约为1~3倍。  相似文献   

11.
高压射流冲击破岩是一个复杂的非线性问题。通过MSC.Marc建立模型,分别使用动态接触作为非线性冲击载荷模拟高压水射流冲击岩石。通过动力计算分析,根据岩石内部应力的变化使用Hoffman失效准则研究了岩石的破碎过程。分析表明,增加射流冲击速度可以提高射流破碎岩石的效率,当射流速度迭到某一临界值时,射流水锤作用使得岩石发生大块破碎。  相似文献   

12.
水力破岩最优射流压力实验研究   总被引:1,自引:0,他引:1  
艾池  王林先 《石油钻探技术》1995,23(2):24-25,31
通过对淹没射流破岩的实验研究,得到了以比能作为目标函数的水力破岩最优射流压力条件,可用于指导现场钻井水力参数设计。  相似文献   

13.
脉冲射流破岩规律的数值试验   总被引:6,自引:3,他引:6  
利用非线性动力有限元方法和岩石的动态损伤模型,系统研究了脉冲射流的速度、长度、频率以及脉冲的数量等参数对破岩效果的影响,并用试验进行了验证。研究结果表明,脉冲射流的速度、长度和脉冲数量增大时,岩石的破碎效率迅速增大;射流的破岩效果随脉冲频率的增大,呈现先增大后减小的趋势,存在一个最优频率范围。在此基础上分析了脉冲射流的破岩机理,所得结论为脉冲射流的设计提供了依据。  相似文献   

14.
在淹没和非淹没条件下对星形喷嘴射流的破岩能力进行了实验研究。结果表明,在非淹没条件下,星形喷嘴射流的破岩能力高于常规圆形喷嘴射流;在淹没条件下,当喷距小于10倍喷嘴直径时,星形喷嘴射流的破岩能力较圆形喷嘴射流弱,但是当喷距达到10~16倍喷嘴直径时,星形喷嘴射流的破岩能力明显高于圆形喷嘴射流。据此可将星形喷嘴应用于牙轮钻头,替代圆形喷嘴,以提高钻井清岩和辅助破岩效率,达到提高钻井速度的目的。  相似文献   

15.
脉冲水射流破岩的数值模拟研究   总被引:7,自引:3,他引:4  
根据连续介质力学理论 ,导出了脉冲水射流破岩系统的控制方程。并运用瞬时最小势能原理 ,建立了脉冲水射流破岩的有限元基本列式和离散方程。数值计算的结果较为真实地反映了脉冲射流破岩过程中岩石的动态响应的演化过程 ,揭示了射流破岩过程中的机理。所得结论与相关试验规律吻合良好 ,探索了一种研究水射流破岩规律的有效方法 ,对脉冲水射流破岩的深入研究和应用具有重要的意义。  相似文献   

16.
斧形PDC切削齿比常规PDC齿具有更明显的破岩优势。为了分析斧形PDC齿的破岩机理,利用有限元仿真模拟与试验相结合的方法,通过斧形PDC齿与常规PDC齿破岩过程的对比与受力分析,揭示了斧形PDC齿破岩过程的力学机制。分析结果表明:斧形PDC切削齿破碎岩石时,斧刃会使其前方岩石内部形成一个剪应力集中区,岩石更易发生剪切破坏;切削齿斧刃吃入岩石后,屋脊形的斧形齿逐渐楔入岩石,从侧向上使岩石发生拉伸破坏,提高了其破岩效率;斧形齿破岩时所受轴向力和切向力小,更易吃入岩石,所受切向力及轴向力波动幅度更小,具有攻击性及稳定性强的优点,不易发生冲击损坏,在井下使用寿命更长。研究结果可以为新型PDC切削齿的研发和高效PDC钻头的设计及应用提供指导。  相似文献   

17.
围压对射流破岩特性影响的试验研究   总被引:2,自引:0,他引:2  
围压是石油工程中影响射流动力学特性的重要参数之一。应用高压井筒模拟试验装置进行了围压对常规连续射流、空化射流和磨料射流破岩效果影响的试验,最高围压达到20MPa。试验结果表明,围压对常规连续射流和空化射流破岩效果影响明显,破碎体积随围压的增大而减小,减小的速度随围压增大逐渐变缓;而对获得最大破碎体积的最优喷距影响不大,为3~5倍喷嘴直径,说明围压对射流基本结构特性影响不明显。当围压小于15MPa时,磨料射流射孔深度随围压的增大而近似呈线性减小。该试验可为射流参数的优选提供依据。  相似文献   

18.
超高压射流破岩的室内试验研究发现:射流压力越高破岩效果越好;最优喷距随着射流压力的升高而增大,200 MPa时最优喷距达到32.5倍喷嘴直径;150 MPa时破岩效率最高;喷嘴安装角度为12.5°时破岩效果最好。据此,对超高压PDC钻头的喷嘴布置进行了优化,认为普通喷嘴布置方式是不合理的,并优选出了最佳超高压喷嘴布置方式,这有利于提高超高压射流破岩效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号