首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
二维材料是指厚度在纳米尺度,且在两个维度(长和宽)具有较大尺寸的材料。与块体材料相比,二维材料最大的特点是具有极高的表面/体积比,有利于传质、传热和离子扩散,因而在吸附、催化以及储能等领域有广泛的应用。近年来,随着石墨烯引发的二维材料研究浪潮,二维炭基多孔材料成为全世界关注的研究热点。而二维炭基材料的孔结构是影响其性能的关键因素。本文介绍了近年来二维炭基多孔材料的合成方法,包括炭纳米片及炭-无机复合纳米片的制备,讨论了制备条件对材料孔结构的影响。在此基础上,着重介绍了二维炭基材料在吸附、多相催化及储能方面的应用。最后,对新型炭基二维材料开发中仍存在的关键科学问题进行了总结和展望。  相似文献   

2.
CH4干重整(DRM)技术能够同时将CH4和CO2两种温室气体转化为合成气,以实现温室气体减排及资源化利用,因此,越来越受到研究者的青睐。生物质炭具有高比表面积、发达的孔隙结构、高的热稳定性、优异的耐酸碱性、丰富的碱/碱土金属和含氧官能团含量以及成本低廉等优点,其应用于DRM,可以适用于页岩气、油田伴生气、焦炉煤气和煤层气等不同的重整体系,省去部分废气的脱硫等预处理过程,具有重要的工业应用前景。本工作对用于DRM的生物质炭基催化剂载体的制备工艺进行了总结。综述了不同的炭化工艺及其对生物质炭产量和性质的影响;介绍了生物质炭的理化性质对重整反应的影响及影响理化性质的因素;分析了不同的活化方法对生物质炭基催化剂催化性能的影响;并对影响催化剂稳定性的碳消耗进行了介绍。  相似文献   

3.
挥发性有机物(VOCs)是大气中重要的污染源之一,对环境和人类健康产生严重的危害。吸附法是工业中最常用的去除VOCs的方法,吸附剂是吸附技术的关键,生物质炭是一种由生物质基材料在高温下热解活化等工艺制得的炭材料,具有较高的比表面积、丰富的孔隙结构和化学活性表面,在环境污染控制领域具有广泛应用。基于最近的研究,本文系统地综述了常用于去除VOCs的生物质炭的制备和改性方法,以及生物质炭在吸附VOCs的应用研究。本文首要目标是评估生物质炭去除VOCs的能力,特别是经过各种改性和活化工艺后,评价生物质炭作为吸附剂去除VOCs的适用性;确定改性和活化后对VOCs吸附能力的影响;揭示生物质炭对VOCs可能存在的吸附机理。最后,文章也对生物质炭的再生提出了建议和展望。  相似文献   

4.
刘昊  孙新枝 《化学研究》2020,31(2):124-132
通过两步水热合成法制备了具有核壳结构的ZnO纳米棒@Ni-Co双氢氧化物复合材料纳米片阵列.首先,以碳布为基底,水热法生成的ZnO沉积在碳布上形成ZnO纳米棒花簇.其次,以ZnO纳米棒为模板,水热法生成的Ni-Co双氢氧化物纳米片沉积在ZnO纳米棒表面,形成ZnO纳米棒@Ni-Co双氢氧化物纳米片复合材料阵列.形貌、结构分析和电化学性能测试表明,以碳布为基底,成功地合成了以ZnO纳米棒为模板并具有核壳结构的ZnO纳米棒@Ni-Co双氢氧化物复合材料纳米片阵列,该复合材料纳米片阵列具有较大的纵横比,且分散均匀.合成的ZnO纳米棒@Ni-Co双氢氧化物复合材料纳米片阵列具有良好的电化学性能,当电流密度为1 A/g时,其比电容值可达531.6 F/g,该复合材料在超级电容器电极材料领域具有良好的应用前景.  相似文献   

5.
生物质转化为平台分子,进一步转化成燃料和化学品是生物质利用的重要途径之一。本文总结了水相加氢反应及其催化剂的研究进展,指出了水相催化反应对催化剂的调控合成带来的挑战,如活性组分的流失,催化剂表面重构及毒化等。总结了水相催化加氢反应中高活性及高稳定性加氢催化剂的合成策略:如载体表面结构调控、炭的表面包覆、载体与金属活性组分之间相互作用的增强及新结构催化剂的设计合成等,指出了水相加氢反应的催化剂设计合成的发展方向,为生物质催化转化研究提供参考。  相似文献   

6.
整体式催化剂催化重整净化生物质粗燃气性能研究   总被引:6,自引:0,他引:6  
采用分步浸渍法制备了以Ni为活性组分的整体式催化剂,以萘为生物质焦油的模型化合物,考察了整体式催化剂催化重整生物质粗燃气的性能,通过元素分析、热重分析等方法对催化剂的表面积炭进行了研究。结果表明,在整体式催化剂作用下,108h的连续反应中,CH4的平均转化率达到92%,最高达到93.8%。合成气H2/CO的摩尔比保持0.95左右,最高达到1.15,适合液体燃料合成。CO2 的平均转化率为80%,最高达到88%。实验中添加萘模拟生物质焦油的成分,经检测焦油全部转化为H2、CO及微量轻质组分。反应连续进行108h,未发现反应器压降变化和CH4与焦油转化率的下降,表明整体式催化剂具有较好的活性和抗积炭性能。  相似文献   

7.
超薄金属-有机框架材料(MOFs)纳米片具有高密度、 易暴露的表面活性位点、 较短的底物/产物扩散路径等特点, 是性能优异的异相催化剂. 本文以光活性有机配体(H4TBAPy)和镧系金属离子Sm3+构筑光活性超薄MOFs纳米片, 以苯甲酸作为调节剂, 利用微波法快速合成了Sm-TBAPy二维纳米片. 利用扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 X射线衍射(XRD)、 紫外-可见漫反射光谱(UV-Vis DRS)、 傅里叶变换红外光谱(FTIR)和氮气吸附-脱附等手段表征了Sm-TBAPy二维纳米片的形貌、 结构和组成. 所合成的Sm-TBAPy为单分散二维纳米片, 宽度约为200 nm, 厚度约为12 nm, BET比表面为163 m2/g, 禁带宽度为2.62 eV. Sm-TBAPy二维纳米片在室温、 氧气氛围和可见光照射条件下, 可将芥子气模拟剂[2-氯乙基乙基硫醚(CEES)]高效、 高选择性氧化成亚砜产物CEESO, 且催化剂经过4次循环使用仍保持较高的催化性能. 结合电子顺磁共振波谱, 提出了Sm-TBAPy二维纳米片可见光催化氧化CEES的催化机理.  相似文献   

8.
邓筠飞  杜卫民  王梦瑶  位庆贺 《应用化学》2019,36(11):1323-1332
以玉米秸秆为原料,合成了高比表面积(2167 m2/g)的多孔生物质炭材料。 优化实验条件即可获得性能最佳的生物质炭电极材料,其在电流密度为1 A/g时的比电容高达390 F/g。 更重要的是,以所得最佳多孔生物质炭为电极材料,3 mol/L 的KOH溶液为电解质,组装了液相对称超级电容器。 该超级电容器在功率密度为818 W/kg时,其能量密度高达7 Wh/kg,在循环10000圈后的电容保持率为91.1%。 同时,将两个这种超级电容器串联充电之后,能够点亮15个LED灯并驱动小风扇正常工作。 这些结果表明,将基于玉米秸秆的多孔生物质炭作为先进电极材料应用于超级电容器具有较大的实际应用价值。  相似文献   

9.
研究了富氧环境中生物质基活性炭负载钾催化剂选择性还原氮氧化物的性能。结果表明,与煤基(褐煤)活性炭负载钾催化剂相比,生物质基(木屑)活性炭负载钾催化剂表现出高选择性还原NO能力,在2 h恒温稳态实验过程中能够保持80%的NO还原效率,而C-O2反应活性仅为18%。X射线衍射、比表面积、X射线光电子能谱以及程序升温脱附实验表征结果显示,生物质基活性炭负载钾催化剂优异的选择性还原NO性能应归因于炭表面钾物种的高度分散性,这与催化剂的高比表面积以及大量的表面氧基团有关。另外,生物质基炭材料还原NO反应产物中具有较高的CO2选择性。  相似文献   

10.
选择多巴胺作为标志物,构建了基于分层Ti3C2 MXene(DL-Ti3C2)纳米片的电化学检测平台。通过原位锂离子插层法成功合成了DL-Ti3C2纳米片。采用扫描电镜和X-射线粉末衍射等手段对Ti3C2 MXene纳米片进行了微观形貌及结构表征。利用循环伏安法研究了多巴胺的电化学行为,结果表明DL-Ti3C2纳米片比多层Ti3C2 Mxene(ML-Ti3C2)纳米片具有更优异的电化学分析性能。基于DL-Ti3C2纳米片独特的二维纳米片形态、大的比表面积和优异的导电率,所制备的传感器能够实现对多巴胺的高灵敏检测,检出限为0.33μmol/L。该传感平台可用于针对飞行员的特殊神经精神性疾病检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号