首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
用量子力学与分子力学组合的ONIOM方法, 研究两种构象的赖氨酸(Lys)分子限域在螺旋手性单壁氮化硼纳米管(SWBNNT)内的手性转变机理. 结果表明: 限域 在小管径螺旋手性SWBNNT的Lys分子骨架形变明显; 当两种构象的Lys分子限域在SWBNNT(6,4)时, 旋光异构反应的表观能垒分别为17590,23044 kJ/mol, 旋光异构反应决速步骤的内禀能垒分别为21140,23044 kJ/mol, 来源于质子从手性C向氨基N迁移的过渡态, 比裸反应的决速步骤能垒(252.60 kJ/mol) 低. 即螺旋手性SWBNNT的管径越小, 限域催化作用越明显, 限域在SWCNT(6,4)内具有氨基与羧基间单氢键的Lys分子先旋光异构.  相似文献   

2.
采用量子力学与分子力学组合的ONIOM方法,研究了限域在几种不同尺寸的扶手椅型单壁碳纳米管内赖氨酸分子的手性转变机理.结构分析表明:随着纳米管管径的减小,限域其中的赖氨酸分子构型的形变越来越明显,骨架碳原子间的键角明显增大;手性碳上的H与氨基N的距离逐渐变小.反应通道研究发现:标题反应在不同尺寸的纳米管内具有不同的通道,在SWCNT(5,5),SWCNT(6,6)和SWCNT(7,7)分别具有1个、4个和3个反应通道.势能面计算表明,赖氨酸限域在SWCNT(5,5)时,手性转变的吉布斯自由能垒被降到最低值192.8kJ·mol-1,是由手性碳上的质子向氨基氮和氨基上的质子向羰基氧双质子协同迁移的过渡态产生的.与裸反应的此通道决速步能垒252.6kJ·mol-1相比较有显著降低.结果表明:SWCNT(5,5)对赖氨酸的手性转变反应具有较好的限域催化作用,可作为实现赖氨酸旋光异构的纳米反应器.  相似文献   

3.
用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala在SWBNNT(9,9)与水复合环境的手性转变。分子结构计算表明:反应物S型α-Ala和中间体INT1在SWBNNT(9,9)与水复合环境,与单体相比,氢转移断的O-H和C-H键都略长,H与其要转移到的目标原子O的距离均短很多。反应通道研究发现:在SWBNNT(9,9)与水复合环境下,α-Ala手性转变有4条路径,每条路径上氢转移都能以1个或2个水分子为媒介实现。势能面计算发现:手性转变反应的最高能垒来自H从手性C向羰基O转移的过渡态;在氨基先异构接着羧基H转移和H从手性C向羰基O转移顺次实现的路径,并以2H2O为氢转移媒介时最高能垒被降到最小值153.8 k J·mol-1。比只在SWBNNT(9,9)内的302.7 k J·mol-1明显降低,比只在水环境的167.8 k J·mol-1也有所降低。结果表明:SWBNNT(9,9)与水复合环境,对α-Ala手性转变有较好的催化作用。  相似文献   

4.
采用量子化学ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究了限域在SWCNT(9,9)与水复合环境下α-Ala的手性转变机理.反应通道研究发现:α-Ala在SWCNT(9,9)与水复合环境下有两个手性转变通道,一是手性碳上的氢以水分子为桥梁直接转移到羰基氧上,再经过一系列过程完成手性转变;二是氢先在羧基内以水分子为桥梁转移,而后手性碳上的氢以水分子为桥梁转移到羰基氧上,再经过一系列过程完成手性转变.反应过程势能面计算发现:S型α-Ala在SWCNT(9,9)内分别以1个和2个水分子作为桥梁实现氢转移,最高能垒都来自氢从手性碳转移到羰基氧的过渡态.与单体情形相比较,在第一通道最高能垒从326.5kJ·mol-1降到192.2和164.5kJ·mol-1,在第二通道最高能垒从320.3kJ·mol-1降到175.5和154.3kJ·mol-1.结果表明SWCNT(9,9)与水的复合环境对α-Ala手性转变过程的限域影响,是使氢转移反应的能垒比单体和只限域在SWCNT(9,9)的情形明显降低,且比单纯水环境下也有所降低.  相似文献   

5.
采用组合的量子化学ONIOM方法,研究MOR分子筛12元环孔道对赖氨酸分子手性转变反应的限域催化.结果表明:限域在MOR分子筛12元环孔道的客体与裸环境下的构象不同,过渡态a_TS2@MOR的1C—5N键长缩短,中间体SINT1@MOR的12H与9O,11H与9O以及12H与10O间的距离缩短;手性转变反应有a,b,c 3个通道;通道a为手性转变反应的主反应通道,决速步骤的Gibbs自由能垒为229.7kJ/mol,比裸反应决速步骤的Gibbs自由能垒252.6kJ/mol明显降低,即MOR分子筛对赖氨酸分子的手性转变反应有一定的限域催化作用.  相似文献   

6.
用量子力学和分子力学相结合的ONIOM(B3LYP/6-31+g(d,p)∶UFF)方法,研究SWCNT((8,8),(7,7),(6,6))内的布洛芬(IBU)分子结构和手性转变机理,在ONIOM(B3LYP/6-311++g(2df,pd)∶UFF)水平计算单点能.分子结构研究表明:与单体IBU分子相比,受限于SWCNT(6,6)时,羧基C与它的两个O的键长,羧基C与手性C的键长明显减小,导致手性C和羰基O以及羧基两个O的间距明显缩短.随着管径的增加,IBU分子结构变化变得不明显.手性转变反应通道研究表明:在SWCNT(8,8)内存在两个反应通道,一是手性碳上的氢直接以羰基氧为桥梁转移到手性碳的另一侧;二是氢先在羧基内转移,从羟基转移到羰基,而后手性碳上的氢再以羰基氧为桥梁转移到手性碳的另一侧.在SWCNT(7,7)和SWCNT(6,6)内只存在第二通道.反应势能面计算发现:IBU分子在SWCNT(6,6)内,羧基内氢转移和氢从手性碳转移到羰基的能垒明显降低,从单体的143.9和306.4kJ·mol-1分别降到123.3和246.3kJ·mol-1;在SWCNT(7,7)内降低的幅度次之,在SWCNT(8,8)内降低幅度很小.结果表明:IBU限域在SWCNT内时的氢转移反应能垒随管径减小而降低.  相似文献   

7.
采用量子力学与分子力学组合的ONIOM方法,研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理.采用原子中心密度矩阵传播(ADMP)分子动力学方法,研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径,给出中间体和产物的微观动态反应图像.结果表明:随着纳米管管径的减小,限域其中的Lys分子骨架C原子间的键角明显增大;手性C上的H与氨基N的距离逐渐变小;在SWBNNT(5,5)内,通过2个基元反应Lys分子实现了手性转变;在SWBNNT(6,6)和SWBNNT(7,7)内,通过3个和4个基元反应Lys分子实现了手性转变;在SWBNNT(5,5)内,Lys分子手性转变反应决速步骤自由能垒降为最低值190.1kJ/mol.在SWBNNT(7,7)内,决速步骤能垒与裸反应基本相同.  相似文献   

8.
采用量子力学与分子力学组合的ONIOM方法,研究了布洛芬在MOR分子筛12元环孔道限域环境的手性转变.反应通道研究发现:标题反应有7条路径,质子从手性碳的一侧向另一侧迁移可分别以羰基、甲基和羰基联合、羧基以及羧基和苯环联合作桥实现.反应势能面计算发现:在羧基内实现质子迁移后,手性C上的质子以新羰基O为桥迁移到苯环,接着苯环上的质子又以羰基为桥在纸面里迁移到手性碳的手性转变过程是主反应路径.决速步骤是质子从手性碳向新羰基氧的迁移过程,决速步骤吉布斯自由能垒是263.4kJ·mol~(-1),相对于裸反应决速步骤的能垒287.1kJ·mol~(-1)有明显降低.结果表明:MOR分子筛12元环孔道对布洛芬的手性转变反应具有限域催化作用.  相似文献   

9.
采用组合量子化学ONIOM方法,基于氨基作为氢迁移桥梁,考察单壁碳纳米管(SWCNT)与水复合环境下α-丙氨酸分子(α-Ala)的手性转变机理.结果表明:基于氨基作为氢迁移桥梁的手性转变反应有a和b两个通道,其中通道a最具优势;水与扶手椅型SWCNT复合环境对氢迁移反应具有较好的催化作用;在SWCNT(8,8)的限域环境下,3个水分子构成的链使主反应通道的决速步骤能垒从裸反应的266.1kJ/mol降至117.8kJ/mol.表明SWCNT(8,8)与水构成的复合环境可作为实现α-Ala手性转变的理想纳米反应器,生命体内α-Ala分子可在类似的纳米环境实现旋光异构.  相似文献   

10.
用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究了α-Ala限域在SWCNT(12,6)与水复合环境的手性转变.分子结构计算表明:反应物S型α-Ala在SWCNT(12,6)和水的复合环境与单体相比,氢转移需要断的O—H键长都略长,氢转移的H与其要转到的目标原子O的距离均短很多.中间体在SWCNT(12,6)和水的复合环境下与单体相比,涉及到氢转移的C—H键略长;涉及到氢转移的H和O的距离都短.反应通道研究发现:α-Ala在SWCNT(12,6)与水复合环境下,手性转变反应有4条路径,每条路径上的氢转移都能以1个或2个水分子为媒介实现.势能面计算发现:各反应路径上的最高能垒均来自氢从手性碳向羰基氧转移的过渡态.最高能垒的最小值在氨基先异构接着羧基氢转移的路径,并以2H2O为氢转移媒介,能垒为100.3kJ·mol-1.比α-Ala在SWCNT(9,9)与水复合环境手性转变过程最高能垒的最低值154.3kJ·mol-1明显降低.结果表明:对于α-Ala的手性转变反应,螺手性SWCNT是比扶椅型SWCNT更好的纳米反应器.  相似文献   

11.
基于密度泛函理论中的B3LYP方法, 在6-31+G(d,p)基组水平上理论研究限域BN纳米管中苯丙氨酸(Phe)分子手性对映体的转变过程. 通过寻找反应过程中各过渡态和中间体的极值点基本结构, 绘制BN纳米管限域条件下Phe分子手性转变路径上各反应势能面. 结果表明: 在BN纳米管限域条件下, S-Phe@BNNT分子手性1C原子上的12H原子以羧基上的9O原子为桥梁, 转移至手性1C原子的另一侧, 实现了从S-Phe@BNNT到R-Phe@BNNT[KG*8]分子手性对映体的转变.  相似文献   

12.
基于密度泛函理论中的B3LYP方法, 在6-31+G(d,p)基组水平上理论研究限域BN纳米管中苯丙氨酸(Phe)分子手性对映体的转变过程. 通过寻找反应过程中各过渡态和中间体的极值点基本结构, 绘制BN纳米管限域条件下Phe分子手性转变路径上各反应势能面. 结果表明: 在BN纳米管限域条件下, S-Phe@BNNT分子手性1C原子上的12H原子以羧基上的9O原子为桥梁, 转移至手性1C原子的另一侧, 实现了从S-Phe@BNNT到R-Phe@BNNT[KG*8]分子手性对映体的转变.  相似文献   

13.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法,研究了单体天门冬氨酸分子手性转变机理及水分子和羟自由基对氢迁移反应的催化作用.反应通道研究发现:天门冬氨酸手性转变有a,b,c和d 4个反应通道.a是手性C上的H以氨基N为桥,转移到手性C另一侧;b是手性C上的H顺次以羰基O和氨基N为桥,转移到手性碳另一侧;c是手性C上的H只以羰基O为桥,转移到手性碳另一侧;d是羧基内H迁移后,手性C上的H再以羰基O为桥,转移到手性碳另一侧.势能面计算表明:a通道是优势反应通道,最高能垒为258.2 kJ·mol~(-1),来自手性C上的H向氨基N转移的过渡态;2个水分子构成的链使该能垒降为117.1 kJ·mol~(-1),水分子和羟自由基构成的链使该能垒降为98.6 kJ·mol~(-1).  相似文献   

14.
采用密度泛函理论的B3LYP方法,微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究两种稳定构型谷氨酸分子的手性转变及水溶剂化效应.结果表明:构型1的优势通道为通道a和通道b,决速步骤自由能垒分别为242.3,245.7kJ/mol;构型2的优势通道为通道a,决速步骤自由能垒为243.5kJ/mol;决速步骤能垒均由质子从手性C向氨基N迁移的过渡态产生;水溶剂化效应使构型1的优势通道决速步骤自由能垒降至101.5kJ/mol;决速步骤的反应速率常数在298.15K时为1.002×10~(-5)s~(-1),在310.00K时为3.802×10~(-5)s~(-1).可见谷氨酸分子在生命体内富水环境下可缓慢地实现旋光异构.  相似文献   

15.
采用量子力学与分子力学组合的ONIOM方法,研究布洛芬限域在水与MOR分子筛复合环境的手性转变.结构研究表明:1,2个和3个水分子助氢迁移反应的过渡态分子氢键键角不断增大,3个水分子助氢迁移反应的10元环过渡态结构明显偏离平面.反应通道研究发现:标题反应有a1,a2和b三个通道.a1和a2是经过水助羧基内质子迁移和质子以新羰基氧为桥从手性碳向苯环迁移的共同历程后,再分别直接迁移到手性碳的另一侧和以新羰基氧为桥迁移到手性碳的另一侧;b是水助质子以羰基氧为桥从手性碳的一侧迁移到另一侧.势能面计算表明,a2是主反应通道,在2个水分子助质子迁移反应时,决速步吉布斯自由能垒被降到最低值124.3kJ·mol-1,与裸反应、限域在MOR分子筛和限域在水环境的此通道决速步能垒287.1,263.4kJ·mol-1和152.2kJ·mol-1相比较,均有明显降低.结果表明:水与MOR分子筛复合环境对布洛芬手性转变具有较好的共催化作用,可作为理想的实现布洛芬手性转变的纳米反应器.  相似文献   

16.
基于密度泛函理论, 在B3LYP/6-31+g(d,p)水平上研究水环境下布洛芬分子的手性转变机理, 确定水环境下布洛芬分子从S型向R型转变过程中的过渡态和中间体等极值点结构; 在MP2/6-31++g(d,p)水平上计算各稳定点和过渡态体系的单点能, 并对体系能量进行零点振动能修正; 绘制水环境下布洛芬分子手性
转变反应路径上H转移和中间体异构过程的势能面. 结果表明: 水环境下布洛芬分子手性转变有两条路径, 其H转移过程均可通过1个和2个水分子作为桥梁实现, 最高能垒均来自于手性C的H向羰基O的转移过程, 且均以2H2O为桥梁时能垒最低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号