首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this investigation, cryogels composed of poly(vinyl alcohol) (PVA) were prepared by repeated freeze‐thaw method. The prepared cryogels served as templates for producing highly stable and uniformly distributed silver nanoparticles via in situ reduction of silver nitrate (AgNO3) using alkaline formaldehyde solution as reducing agent. The structure of the PVA/Ag cryogel nanocomposites was characterized by a Fourier transform infrared and Raman spectroscopy. The morphologies of pure PVA cryogels and PVA/Ag nanocomposites were observed by a scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated Ag nanoparticles with diameter about 100 nm. XRD results showed all relevant Bragg's reflections for crystal structure of silver nanoparticles. The amount of silver in cryogel nanocomposites and thermal stability were determined by inductively coupled plasma atomic emission spectrometry (ICP‐AES) and thermogravimetric analysis measurements. Mechanical properties of nanocomposites were observed in terms of tensile strength. The antibacterial studies of the synthesized nanosilver containing cryogels showed good antibacterial activity against both gram‐negative and gram‐positive bacteria. The prepared PVA/Ag nanocomposites were also investigated for swelling and deswelling behaviors. The results reveal that both the swelling and deswelling process depends on the chemical composition of the cryogel silver nanocomposites, number of freeze‐Thaw cycles and pH and temperature of the swelling medium. The biocompatibility of the prepared nanocomposites was judged by in vitro methods of percent hemolysis and protein (BSA) adsorption. POLYM. COMPOS., 36:1983–1997, 2015. © 2014 Society of Plastics Engineer  相似文献   

2.
Cryogels are macroporous hydrogels which are synthesized through cryogelation method. In the present study cryogels of poly (2-hydroxyethyl methacrylate-co-acrylonitrile) (P (HEMA-co-AN)) were synthesized by copolymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylonitrile (AN) monomers by redox polymerization using cryogelation technique. The synthesized cryogels were characterized by FTIR, SEM, XRD, DSC and TGA techniques. Different compositions of the cryogels were prepared by varying concentrations of the monomers and redox initiators in the feed mixture. These cryogels were then subjected to swelling studies and porosity determination. The swelling behavior was studied as function of concentration of the monomers, redox initiators, temperature, pH, and simulated biological fluids. The prepared cryogels were also characterized for their network parameters using water sorption data. The biocompatibility of P (HEMA-co-AN) cryogel was evaluated by in vitro cytotoxicity test. The results indicated that the P (HEMA-co-AN) cryogel had macroporous morphology and exhibited good water absorption capacity. Moreover, the cryogel was thermally stable and biocompatible in nature.  相似文献   

3.
Polyvinyl alcohol (PVA) and casein are biocompatible and biodegradable macromolecules, which have been widely applied in biomedical fields. In this paper, novel physically crosslinked hydrogels composed of PVA and casein were prepared by repeated freezing–thawing treatment of aqueous solutions of PVA and casein and characterized by IR, differential scanning calorimetry and scanning electron microscopy techniques. The prepared so‐called ‘cryogels’ were evaluated for their water uptake, and the influences of various factors, such as their chemical architecture and the pH and temperature of the swelling bath, were investigated in terms of water sorption. The effect of salt and various simulated biological fluids on the swelling of cryogels was investigated. The in vitro biocompatibility of the prepared cryogels was also judged by methods such as protein (bovine serum albumin) adsorption, blood clot formation and percentage haemolysis measurements. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
In the present work polyvinyl alcohol‐starch/silver hydroxyapatite (PVA‐starch/AgHap) cryogel nanocomposites were prepared by successive freezing‐thawing of a blend of PVA and starch solutions to fabricate a cryogel followed by its reinforcement with silver hydroxyapatite (AgHap). The prepared macroporous cryogel nanocomposites were characterized by Infra‐red spectroscopy (FTIR), environmental scanning electron microscopy (ESEM), and particle size and charge analysis. The amylase induced enzymatic degradation of nanocomposites was studied gravimetrically in phosphate buffer saline (PBS) and effect of various parameters like chemical composition of the nanocomposite, number of freeze‐thaw cycles, and enzyme activity were assessed on the extent of degradation of the nanocomposite. The influence of chemical composition and experimental conditions like the number of freeze thaw cycles was studied on the elastic modulii of the cryogels. The in vitro cytotoxicity and antibacterial activity of nanocomposites was also evaluated against L‐529 fibroblast cells and gram positive and gram negative bacteria, respectively. POLYM. ENG. SCI., 59:254–263, 2019. © 2018 Society of Plastics Engineers  相似文献   

5.
Poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend hydrogels have immense potential for use as functional biomaterials. Understanding of influences of processing parameters and compositions on mechanical and swelling properties of PVA/SA blend hydrogels is very important. In this work, PVA/SA blend hydrogels with different SA contents were prepared by applying freeze–thaw method first to induce physical crosslinking of PVA chains and then followed by Ca2+ crosslinking SA chains to form interpenetrating networks of PVA and SA. The effects of number of freeze–thaw cycles, SA content and Ca2+ concentration on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels were investigated. The results showed that the blend hydrogels have porous sponge structure. Gel fraction, which is related to crosslink density of the blend hydrogels, increased with the increase of freeze–thaw cycles and strongly depended on SA content. The SA content exerts a significant effect on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels. The number of freeze–thaw cycles has marked impact on mechanical properties, but no obvious effect on the pH‐sensitivity of the PVA/SA blend hydrogels. Concentration of CaCl2 aqueous solution also influences mechanical properties and pH‐sensitivity of the blend hydrogel. By altering composition and processing parameters such as freeze–thaw cycles and concentration of CaCl2 aqueous solution, the mechanical properties and pH‐sensitivity of PVA/SA blend hydrogels can be tightly controlled. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Foamed poly(vinyl alcohol) (PVA) cryogels, which are formed as a result of freeze–thaw treatment of whipped PVA water solutions (polymer with MW of 69,000 Da and DD ~99 mol % was used), were obtained and their properties were studied. The rheological characteristics and macrostructure of these gel materials were controlled by the same factors as for the ordinary nonfoamed PVA cryogels (initial polymer concentration and freezing–thawing regimes) and also by the conditions of generation of fluid PVA foams. The study of the kinetics of the freeze–thaw‐induced gel formation of these foams revealed that the temperature dependence of the efficiency of cryotropic gelation showed a maximum at about ?1.5°C. The presence of low molecular weight admixtures in the initial polymer solution appears to be a rather important factor because the admixtures were capable of decreasing the stability of fluid PVA foams and weakening both foamed and nonfoamed cryogel samples. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1609–1619, 2001  相似文献   

7.
Freeze‐thaw treatment of concentrated (>5 g/dL) aqueous solutions of poly(vinyl alcohol) (PVA) (MW 115,000; DD ≈100%) resulted in the formation of opaque gels. The extent of such a cryostructuration process was exhibited in the rheological properties of similar PVA cryogels. The gels' strength depended on the initial polymer concentration in the solution to be frozen and on the conditions of a cryogenic influence. The key factor was the defrostation dynamics: the slower the thawing rate, the stronger the cryogel sample formed, provided other parameters of the process were identical. The observation for the kinetics of the freeze‐thaw–induced gel formation revealed the extreme character of the temperature dependence of the efficacy of PVA cryotropic gelation, the maximum point being in the vicinity of −2°C. It was shown that the effect of the strengthening of PVA cryogels prepared by means of a single‐cycle cryogenic treatment could be reached either with use of as slow as possible thawing regimes, or by the prolonged frozen storage of the samples at “high” subzero temperatures. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2017–2023, 2000  相似文献   

8.
Cryogels based on poly(vinyl alcohol) [PVA] and three types of bioinsertions such as scleroglucan, cellulose microfibers, and zein, respectively, have been prepared using capacity of PVA to crosslink by repeated freezing–thawing cycles. The effect of the incorporation of biopolymers on the properties of PVA cryogel has been studied by using several techniques such as: scanning electron microscopy, differential scanning calorimetry, and Fourier transform infrared studies. The obtained biobased cryogel membranes were subjected to sorption and to diffusion experiments using Crystal Violet (CV), a dye commonly used in the textile industry and in medicine. Image analysis with CIELAB system was used both to monitor the cryogels loading with CV and to gain insight in the dye state into the gel, in correlation with the bioinsertion type and gels morphology. Dye diffusion but also sorption capacity of the cryogels was found to be closely related to the type of biopolymer. In this article the equilibrium (sorption isotherms) and transport properties (diffusion and permeability coefficients) of CV, in/through physical cross‐linked PVA hydrogel membranes with bioinsertions has been reported. The highest efficiency for the CV removal from aqueous solutions was obtained for the PVA/Scl cryogels. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41838.  相似文献   

9.
A series of ionic poly(acrylamide) (PAAm) gels was prepared by free‐radical crosslinking copolymerization of acrylamide and N,N′‐methylenebisacrylamide in aqueous solutions. The gels were prepared both below and above the bulk freezing temperature of the polymerization solvent water, which are called as the cryogels and the hydrogels, respectively. The deswelling behavior of swollen gels in acetone as well as the reswelling behavior of the collapsed gels in water were investigated. It was shown that the cryogels respond against the external stimuli much faster than the hydrogels. The interior morphology of the cryogel networks exhibits a discontinuity and a two‐phase structure, compared to the continuous morphology of the hydrogel networks. Introduction of the ionic units in the network chains further increased the response rate of the cryogels. In contrast to these advantages of cryogels, they exhibit lower swelling capacities than the conventional hydrogels. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 319–325, 2006  相似文献   

10.
This study examined the effect of the freeze‐thaw process on the physical properties of films prepared from scleroglucan (Scl) hydrogels, suitable for drug delivery applications. Films made from Scl, using glycerol as plasticizer, were prepared from hydrogels by two procedures: a room temperature drying (RTD) method and a freeze‐thaw cyclic process, before the application of RTD, which results in a reinforced physically cross‐linked network. Films were characterized by studies of water vapor transmission (WVT), swelling, tensile tests, ESEM microscopy, FTIR, and drug release measurements. These determinations showed significant differences between films obtained by both treatments. The films prepared through freeze‐thaw cycles showed an important increase of the tensile strength with respect to those corresponding to films only air dried and a decreasing swelling degree in direct relationship to the number of freeze‐thaw cycles. A model drug, Theophylline, was included in these biocompatible films for in vitro drug release measurements, using a flat Franz cell. The physical differences observed between Scl films prepared with both methods can be explained proposing that the number of crosslinking points by hydrogen bonding increase when increasing the number of freezing and thawing cycles used for film preparation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
BACKGROUND: Hydrogels made by irradiation or freeze–thawing often exhibit poor mechanical strength; therefore we investigated a novel synthetic method to circumvent this detrimental effect. We report a series of novel bilayer poly(vinyl alcohol) (PVA)/water‐soluble chitosan (ws‐chitosan)/glycerol hydrogels prepared by a combination of irradiation and freeze–thawing. Scanning electron microscopy morphology, swelling behavior, mechanical strength, elongation at break, PVA dissolution behavior and bovine serum albumin (BSA) release profile of the bilayer hydrogels were compared with those of hydrogels made by irradiation and freeze–thawing followed by irradiation. The cytotoxicity of the bilayer hydrogels was studied using a tetrazolium salt (MTT) assay. RESULTS: The novel bilayer hydrogels contain one layer made by freeze–thawing followed by irradiation and the other layer made by irradiation. The preparation method provides the two layers with good combination force in the wet state. However, the two layers are not combined very well in the freeze‐dried state due to the difference in microstructure. The bilayer hydrogels have large swelling capacity and good mechanical strength, and these properties can be varied by changing freeze–thawing cycles, irradiation doses and the relative thickness of the two layers. The PVA and BSA release behaviors show that the bilayer hydrogels have a small amount of dissolved PVA and can prolong the BSA release time. The MTT assay shows that extracts of the bilayer hydrogels are non‐toxic towards L929 mouse fibroblasts. CONCLUSION: The novel bilayer hydrogels prepared in this study show good physical properties with no cytotoxicity, indicating that they are suitable for biomedical applications, such as in wound dressings and drug delivery devices. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Composite heterophase organic–inorganic hybrid cryogels of poly(vinyl alcohol) (PVA) containing silica constituents were prepared and studied. Such constituents were formed in the course of hydrolytic polycondensation (sol‐gel process) of tetramethoxysilane (TMOS) introduced in to the aqueous polymer solution prior to its freeze–thaw treatment. It was shown that moderate (over the range of ?15 to ?30°C) freezing, then frozen storage, and subsequent thawing of the water/PVA/TMOS systems resulted in the formation of macroporous composite cryogels filled with dispersed silica particles (discrete phase). The continuous phase of such gel materials represents the supramolecular PVA network, which is supposed to be additionally cured with the silicon‐containing oligomeric cross agents formed from TMOS in the course of hydrolytic polycondensation. The incorporated silica components influenced the morphology of cryogels. The effects of significant increase in gel strength and heat resistance with increasing TMOS concentration in the initial feed and with thawing rate decreasing have also been observed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
pH‐sensitive anionic hydrogels composed of poly(vinyl alcohol) (PVA) and poly(γ‐glutamic acid) (γ‐PGA) were prepared by the freeze drying method and thermally crosslinked to suppress hydrogel deformation in water. The physical properties, swelling, and drug‐diffusion behaviors were characterized for the hydrogels. In the equilibrium swelling study, PVA/γ‐PGA hydrogels shrunk in pH regions below the pKa (2.27) of γ‐PGA, whereas they swelled above the pKa. In the drug‐diffusion study, the drug permeation rates of the PVA/γ‐PGA hydrogels were directly proportional to their swelling behaviors. The cytocompatibility test showed no cytotoxicity of the PVA/γ‐PGA hydrogels for the 3T3 fibroblast cell lines. The results of these studies suggest that hydrogels prepared from PVA and γ‐PGA could be used as orally administrable drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Cellular poly(vinyl alcohol) (PVA) hydrogels that exhibit enhanced swelling kinetics from an initial dry state were prepared by freezing and thawing techniques in the presence of NaCl. Gels that were dried immediately after preparation demonstrated a dual‐sorption effect upon swelling. Gels that were exposed to a 10‐day washing period to remove NaCl and excess PVA chains before drying showed an increased initial rate of swelling and overall water content. Freeze/thawed, cellular PVA gels showed overall enhanced swelling with increased mechanical strength over traditional gels prepared by chemical or irradiative crosslinking techniques. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 2075–2079, 2000  相似文献   

15.
Some structural features of hydrogels from poly(acrylic acid) (PAAc) of various crosslinking degrees have been investigated through mechanical and swelling measurements. Interpenetrating polymer hydrogels (IPHs) of poly(vinyl alcohol) (PVA) and PAAc have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N,N‐methylenebisacrylamide in the presence of PVA. The application of freeze–thaw (F–T) cycles leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and viscoelastic properties of the IPHs were evaluated as a function of the content of crosslinker and the application of one F–T cycle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5789–5794, 2006  相似文献   

16.
张敏  李碧婵  陈良壁 《化工进展》2015,34(4):1043-1049,1087
互穿网络聚合物(IPN)水凝胶在分离技术领域具有广泛的应用前景,这些年受到人们广泛关注.本文介绍了聚多糖基(壳聚糖、海藻酸、淀粉和其他聚多糖)、蛋白质基(明胶、胶原蛋白、丝纤蛋白和大豆蛋白)和合成聚合物基(非离子型和离子型)IPN水凝胶的制备方法,主要包括同步-IPN、分步-IPN和半-IPN的制备方法.为了提高聚合物水凝胶的生物相容性、溶胀率和机械强度,采用天然高分子与合成高分子共混制备IPN水凝胶.与单网络水凝胶相比,IPN水凝胶对染料和重金属离子的吸附速率快、吸附容量大.为了达到选择性吸附和提高水凝胶的比表面积,制备离子印迹IPN水凝胶和多孔IPN复合冷冻凝胶,是未来研究高效吸附IPN水凝胶的发展方向之一.  相似文献   

17.
In these studies, hydrogels for wound dressing were made from a mixture of Aloe vera, poly(vinyl alcohol) (PVA) and poly(N‐vinylpyrrolidone) (PVP) by freeze‐thaw, gamma‐ray irradiation, or a two‐step process of freeze‐thaw and gamma‐ray irradiation. Physical properties, such as gelation, water absorptivity, gel strength and degree of water evaporation were examined to evaluate the applicability of these hydrogels to wound dressing. The PVA:PVP ratio was 6:4, and the dry weight of Aloe vera was in the range of 0.4‐1.2 wt %. The solid concentration of PVA/PVP/Aloe vera solution was 15 wt %. Mixtures of PVA/PVP/Aloe vera were exposed to gamma irradiation doses of 25, 35 and 50 kGy to evaluate the effect of irradiation dose on the physical properties of the hydrogels. Gel content and gel strength increased as the concentration of Aloe vera in PVA/PVP/Aloe vera decreased and as irradiation dose increased and freeze‐thaw was repeated. Swelling degree was inversely proportional to gel content and gel strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1612–1618, 2004  相似文献   

18.
Composite heterophase poly(vinyl alcohol) (PVA) cryogels containing entrapped small droplets of Vaseline oil have been prepared and studied. Such oil‐filled cryogels were formed via freeze–thaw treatment of freshly prepared oil‐in‐water emulsions containing varied volume fraction of lipophilic phase, and the influence of the amount of this phase, as well as the effects of freezing conditions on the physicomechanical (shear moduli) and thermal (gel fusion temperature and fusion enthalpy) characteristics of resulting composites have been explored. It was shown that over certain range of PVA concentrations in aqueous phase and a range of volume fraction of the hydrophobic phase its microdroplets performed as “active” fillers causing an increase in both the gel strength and the heat endurance of composites. The light microscopy data on the morphological features of such filled PVA cryogels revealed the effect of diminution in size of oil droplets entrapped in the gel matrix as compared with the initial emulsions. This effect can be explained by the disintegrating action of crushing and shear stresses arising upon the system freezing and growth of ice crystals. The oil‐filled PVA cryogels were found to be capable of gradually releasing the lipophilic constituents (the Rose hips oil, in this case) in response to the cyclic mechanical compression. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
《Drying Technology》2013,31(7):1319-1333
Resorcinol–formaldehyde hydrogels were synthesized by sol–gel polycondensation of resorcinol with formaldehyde in a slightly basic aqueous solution. RF cryogels, RF xerogels, and RF xerogels (MW gels) were respectively prepared from RF hydrogels by freeze drying, hot air drying, and microwave drying. Carbon cryogels, carbon xerogels and carbon MW gels were subsequently obtained by pyrolyzing RF drygels in an inert atmosphere. Freeze drying and microwave drying were effective to prepare mesoporous RF drygels and carbon gels. RF cryogels and carbon cryogels showed high mesoporosity over wide ranges of the molar ratio of resorcinol to catalyst (R/C) and the ratio of resorcinol to water (R/W) used in sol–gel polycondensation. Although RF xerogels had a few mesopores, carbon xerogels had no mesopores. RF MW gels and carbon MW gels showed mesoporosity if appropriate values of R/C and R/W were selected.  相似文献   

20.
Poly(vinyl alcohol) (PVA) cryogels, which are formed as a result of freeze–thaw treatment of concentrated solutions of the polymer, were studied in respect to the amount of gel and sol fractions in these heterogeneous macroporous gel materials depending on the conditions of the thawing step of similar cryotropic gelation. It was shown that the yield of gel fraction (the efficiency of the gelation process) was not quantitative; this was controlled by the initial PVA concentration in the solution to be frozen, and to a higher extent, by the thawing rate, when the yield increased with slowing of the defrostation process. The sol fraction could be extracted from the PVA cryogels by their rinsing with water at room temperature; the extraction of the sol was accompanied with the variations of the swelling parameters of the gels (initial slight upswelling and subsequent gradual deswelling), as well as with analogous, in their character, variations of the gel strength. It was also demonstrated that at the evaluation of the fusion enthalpies of PVA cryogels with the aid of the Eldridge–Ferry equation a consideration of the values of gel‐fraction yield gave rise to the significantly higher ΔH values than in traditional cases commonly used for the thermoreversible gels, where such an yield was not taken into account. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1822–1831, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号