首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The increasing need for biomass for energy and feedstocks, along with the need to divert organic methane generating wastes from landfills, may provide the economic leverage necessary to return this type of marginal land to functional and economic use and is strongly supported by policy at the European Union (EU) level. The use of land to produce biomass for energy production or feedstocks for manufacturing processes (such as plastics and biofuels) has, however, become increasingly contentious, with a number of environmental, economic, and social concerns raised. The REJUVENATE project has developed a decision support framework to help land managers and other decision makers identify potential concerns related to sustainability and what types of biomass reuse for marginal land might be possible, given their particular circumstances. The decision‐making framework takes a holistic approach to decision making rather than viewing biomass production simply as an adjunct of a planned phytoremediation project. The framework is serviceable in Germany, Sweden, and the United Kingdom. These countries have substantive differences in their land and biomass reuse circumstances. However, all can make use of the set of common principles of crop, site, value, and project risk management set out by REJUVENATE. This implies that the framework should have wider applicability across the EU. This article introduces the decision support framework. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
3.
While ecologists have used food‐web models to understand how ecosystems function, the potential role of integrated food‐web and population‐based models in environmental monitoring and decision making has been ignored. Sound ecological principles should be integrated with state‐of‐the‐art monitoring and management practices. This article presents the ways in which population‐based models can answer basic ecological questions necessary for decision making about remediation and restoration, and for monitoring to ensure long‐term stewardship. Discussed are the uses of food‐web and population‐based models for understanding the movement of chemicals through different trophic levels. Three examples, including global warming, tributyltin, and monomethylmercury scenarios, are presented to illustrate how such models are useful. The responses of the component parts varies, depending on parameters such as birth, death, and respiration, as well as feeding rates, predator‐prey rates, and uptake and elimination rates. There are several different models available for decision making, with different levels of complexity, based on the specific hypothesis or question being asked and the amount of current information available. Therefore, it is recommended to use deterministic‐based, population‐based food‐web models for ecological risk assessment. © 2001 John Wiley & Sons, Inc.  相似文献   

4.
We examined site‐specific advisory board (SSAB) minutes and local newspaper coverage of the Fernald, Hanford, Idaho, Oak Ridge, Rocky Flats, and Savannah River sites of the U.S. Department of Energy (US DOE) in order to determine the importance of risk‐related issues related to remediation and other forms of environmental management. About one‐third of SSAB issues were risk‐related, and these were disproportionately major issues at meetings. The media focused on risks associated with remediation and other forms of waste management. The analysis implies that contractors and government officials need to establish and maintain communications with advisory panels and accentuate these contacts well in advance of contemplated new actions. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
Thousands of unaddressed brownfields sites remain in our nation's poorest urban neighborhoods, despite almost two decades of federal and state attention to cleaning up and redeveloping these sites. Many of these neighborhoods have active community‐based organizations (CBOs) whose mission it is to improve the quality of life for disadvantaged residents whose lives are negatively impacted by these decaying, contaminated properties. Under the assumption that greater involvement of community organizations, specifically community development corporations (CDCs), would help to spur increased attention to and progress toward remediating these sites, we developed a pilot technical assistance program to build CDC capacity to facilitate or actually undertake brownfields redevelopment projects. This article describes the process of development and the program's content and structure and evaluates the program based on a pilot test conducted with two CDCs in a major US city. Future prospects for expansion of this type of program are discussed. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
Sixty leading members of the scientific, engineering, regulatory, and legal communities assembled for the PFAS Experts Symposium in Arlington, Virginia on May 20 and 21, 2019 to discuss issues related to per‐ and polyfluoroalkyl substances (PFAS) based on the quickly evolving developments of PFAS regulations, chemistry and analytics, transport and fate concepts, toxicology, and remediation technologies.  The Symposium created a venue for experts with various specialized skills to provide opinions and trade perspectives on existing and new approaches to PFAS assessment and remediation in light of lessons learned managing other contaminants encountered over the past four decades. The following summarizes several consensus points developed as an outcome of the Symposium:
  • Regulatory and policy issues: The response by many states and the US Environmental Protection Agency (USEPA) to media exposure and public pressure related to PFAS contamination is to relatively quickly initiate programs to regulate PFAS sites. This includes the USEPA establishing relatively low lifetime health advisory levels for PFAS in drinking water and even more stringent guidance and standards in several states. In addition, if PFAS are designated as hazardous substances at the federal level, as proposed by several Congressional bills, there could be wide‐reaching effects including listing of new Superfund sites solely for PFAS, application of stringent state standards, additional characterization and remediation at existing sites, reopening of closed sites, and cost renegotiation among PRPs.
  • Chemistry and analytics: PFAS analysis is confounded by the lack of regulatory‐approved methods for most PFAS in water and all PFAS in solid media and air, interference with current water‐based analytical methods if samples contain high levels of suspended solids, and sample collection and analytical interference due to the presence of PFAS in common consumer products, sampling equipment, and laboratory materials.
  • Toxicology and risk: Uncertainties remain related to human health and ecological effects for most PFAS; however, regulatory standards and guidance are being established incorporating safety factors that result in part per trillion (ppt) cleanup objectives. Given the thousands of PFAS that may be present in the environment, a more appropriate paradigm may be to develop toxicity criteria for groups of PFAS rather than individual PFAS.
  • Transport and fate: The recalcitrance of many perfluoroalkyl compounds and the capability of some fluorotelomers to transform into perfluoroalkyl compounds complicate conceptual site models at many PFAS sites, particularly those involving complex mixtures, such as firefighting foams. Research is warranted to better understand the physicochemical properties and corresponding transport and fate of most PFAS, of branched and linear isomers of the same compounds, and of the interactions of PFAS with other co‐contaminants such as nonaqueous phase liquids. Many PFAS exhibit complex transport mechanisms, particularly at the air/water interface, and it is uncertain whether traditional transport principles apply to the ppt levels important to PFAS projects. Existing analytical methods are sufficient when combined with the many advances in site characterization techniques to move rapidly forward at selected sites to develop and test process‐based conceptual site models.
  • Existing remediation technologies and research: Current technologies largely focus on separation (sorption, ion exchange, or sequestration). Due to diversity in PFAS properties, effective treatment will likely require treatment trains. Monitored natural attenuation will not likely involve destructive reactions, but be driven by processes such as matrix diffusion, sorption, dispersion, and dilution.
The consensus message from the Symposium participants is that PFAS present far more complex challenges to the environmental community than prior contaminants. This is because, in contrast to chlorinated solvents, PFAS are severely complicated by their mobility, persistence, toxicological uncertainties, and technical obstacles to remediation—all under the backdrop of stringent regulatory and policy developments that vary by state and will be further driven by USEPA. Concern was expressed about the time, expense, and complexity required to remediate PFAS sites and whether the challenges of PFAS warrant alternative approaches to site cleanups, including the notion that adaptive management and technical impracticability waivers may be warranted at sites with expansive PFAS plumes. A paradigm shift towards receptor protection rather than broad scale groundwater/aquifer remediation may be appropriate.  相似文献   

7.
The mass‐to‐concentration tie‐in (MtoC Tie‐In) correlates passive soil gas (PSG) data in mass to active soil gas data in concentration determined by the US EPA Method TO‐17 or TO‐15. Passive soil gas surveys consist of rapid deployment of hydrophobic sorbents (dozens to several hundred locations typically installed in one day) to a depth of six inches to three feet in a grid pattern with exposure in the field from three days to two weeks to target a wide variety of organic compounds. A power function is used on a compound‐to‐compound basis to correlate spatially varying mass (nanograms) from selected locations within a passive soil gas survey to concentration (µg/m3) at those same locations. The correlation from selected PSG locations is applied to the remainder of the PSG grid. The MtoC Tie‐In correlations provide added value to a PSG survey, with the PSG data then used to estimate risk throughout the limits of the investigation for quantitative assessment. The results from a site in northern California show the MtoC Tie‐In correlations for both benzene and total petroleum hydrocarbons (TPH). The correlations are applied on a compound‐to‐compound basis to the remaining locations in the PSG grid to provide an estimate of concentration that can be used for comparison to risk/screening levels or fate‐and‐transport diagnostic tools (partitioning equations, solubility laws, etc.). An example of how the correlations are applied is presented in tabular form. The results from a chlorinated solvent survey show the MtoC Tie‐In correlation from a site in Maryland for tetrachloroethene (PCE). In this instance, there was a near‐perfect relationship between the PSG mass and the active soil gas concentration (R2 value of 1). The concentration estimated throughout a PSG grid enables a vast new realm of interpretive power at sites. Several other sites are discussed, including an example application for groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
A new in situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes a horizontal well filled with reactive media to passively treat contaminated groundwater in situ. The approach involves the use of a large‐diameter directionally drilled horizontal well filled with solid reactive media installed parallel to the direction of groundwater flow. The engineered contrast in hydraulic conductivity between the high in‐well reactive media and the ambient aquifer hydraulic conductivity results in the passive capture, treatment, and discharge back to the aquifer of proportionally large volumes of groundwater. Capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and reductions in downgradient concentrations and contaminant mass flux are nearly immediate. Many different types of solid‐phase reactive treatment media are already available (zero valent iron, granular activated carbon, biodegradable particulate organic matter, slow‐release oxidants, ion exchange resins, zeolite, apatite, etc.). Therefore, this concept could be used to address a wide range of contaminants. Laboratory and pilot‐scale test results and numerical flow and transport model simulations are presented that validate the concept. The HRX Well can access contaminants not accessible by conventional vertical drilling and requires no aboveground treatment or footprint and requires limited ongoing maintenance. A focused feasibility evaluation and alternatives analysis highlights the potential cost and sustainability advantages of the HRX Well compared to groundwater extraction and treatment systems or funnel and gate permeable reactive barrier technologies for long‐term plume treatment. This paper also presents considerations for design and implementation for a planned upcoming field installation.  相似文献   

9.
Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a consequence of various industrial processes which destabilizes the ecosystem. Bioremediation by bacteria is a cost‐effective and environmentally safe solution for reducing or eliminating pollutants in soils. In the present study, we artificially polluted agricultural soil with used automobile engine oil with a high PAH content and then isolated bacteria from the soil after 10 weeks. Pseudomonas sp. strain 10–1B was isolated from the bacterial community that endured this artificial pollution. We sequenced its genomic DNA on Illumina MiSeq sequencer and evaluated its ability to solubilize phosphate, fix atmospheric nitrogen, and produce indoleacetic acid, in vitro, to ascertain its potential for contribution to soil fertility. Its genome annotation predicted several dioxygenases, reductases, ferredoxin, and Rieske proteins important in the ring hydroxylation initiating PAH degradation. The strain was positive for the soil fertility attributes evaluated. Such combination of attributes is important for any potential bacterium partaking in sustainable bioremediation of PAH‐polluted soil.  相似文献   

10.
The infiltration of rainfall into contaminated soils and wastes provides the mechanism whereby hazardous chemical and radionuclide constituents of concern are leached and transported to underlying groundwater and potential human and ecological receptors. The application of engineered covers to reduce rainfall infiltration is an approach that is often selected for the remediation of contaminated sites. Evapotranspiration, or water‐balance, cover designs have been shown to be effective ways of preventing infiltration in arid and semiarid climates. This particular design relies on evaporation and vegetative transpiration to reduce potential infiltration to acceptable levels. In this article, we identify and examine the dominant ecological processes that affect the performance of evapotranspiration cover designs. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
Integrated waste management has been accepted as a sustainable approach to solid waste management in any region. It can be applied in both developed and developing countries. The difference is the approach taken to develop the integrated waste management system. This review looks at the integrated waste management system operating in the city of London, Ontario-Canada and how lessons can be drawn from the system’s development and operation that will help implement a sustainable waste management system in the city of Kumasi, Ghana. The waste management system in London is designed such that all waste generated in the city is handled and disposed of appropriately. The responsibility of each sector handling waste is clearly defined and monitored. All major services are provided and delivered by a combination of public and private sector forces.The sustainability of the waste management in the city of London is attributed to the continuous improvement strategy framework adopted by the city based on the principles of integrated waste management. It is perceived that adopting a strategic framework based on the principles of integrated waste management with a strong political and social will, can transform the current waste management in Kumasi and other cities in developing countries in the bid for finding lasting solutions to the problems that have plagued the waste management system in these cities.  相似文献   

13.
A series of laboratory batch leaching tests was conducted to evaluate the performance of different activated carbons in stabilizing mercury in soils. Based on the results of these experiments, an amendment application rate of 5 percent powdered activated carbon (PAC) was selected for in situ field application at a former industrial facility. A geochemical model was also developed to simulate the interactions between mercury and activated carbon in vadose‐zone soils. Modeling was used to (1) better understand possible mercury sequestration mechanisms and (2) predict the in situ performance of PAC. Model results indicate dissolved mercury concentrations observed in batch tests are consistent with equilibrium partitioning of mercury between dissolved organic matter, soil organic matter, and PAC. Activated carbon is predicted to reduce dissolved mercury concentrations via two mechanisms: (1) the formation of stable mercury complexes on PAC surfaces and (2) the direct adsorption of dissolved organic matter that would otherwise be available for mercury dissolution. Study results demonstrate PAC effectiveness for site soils with mercury concentrations below 200 mg/kg. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
15.
Peroxidases and other lignin‐degrading enzymes and chemicals can potentially degrade persistent pollutants. Fifty vascular plant species were hydroponically tested for the capability of decolorization of Poly R‐478, a lignolytic indicator dye. The top six species that had less than 50 percent of control color at the end of the experiments were Pennisetum purpureum, Rumex crispus, Fimbristylis cymosa, Eleocharis calva, Hibiscus furcellatus, and Cyperus javanicus, in an order from high to low decolorization activity. F. cymosa, E. calva, and C. javanicus are in the Cyperaceae family. Extracellular peroxidase activity was found in vascular plants and correlated to decolorization of polymeric dyes. The plant R. crispus provided the highest guaiacol peroxidase enzyme activity among four of the top six plant species. The Poly R‐478 decolorization could be used as a fast screening technique for vascular plants that may have phytoremediation capability. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号