首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C Sureau  B Guerra    H Lee 《Journal of virology》1994,68(6):4063-4066
The hepatitis delta virus (HDV) envelope contains the large (L), middle (M), and small (S) surface proteins encoded by coinfecting hepatitis B virus. Although HDV-like particles can be assembled with only the S protein in the envelope, the L protein is essential for infectivity in vitro (C. Sureau, B. Guerra, and R. Lanford, J. Virol. 67:366-372, 1993). Here, we demonstrate that the M protein, previously described as carrying a site for binding to polymerized human albumin, is not necessary for infectivity. HDV-like particles coated with the S plus L or the S plus M plus L proteins are infectious in primary cultures of chimpanzee hepatocytes. We conclude that the S and L proteins serve two essential functions in the HDV replication cycle; the S protein ensures the export of the HDV genome from an infected cell by forming a particle, and the L protein ensures its import into a human hepatocyte.  相似文献   

2.
The hepatitis delta virus (HDV) is coated with large (L), middle (M), and small (S) envelope proteins encoded by coinfecting hepatitis B virus (HBV). To study the role of the HBV envelope proteins in the assembly and infectivity of HDV, we produced three types of recombinant particles in Huh7 cells by transfection with HBV DNA and HDV cDNA: (i) particles with an envelope containing the S HBV envelope protein only, (ii) particles with an envelope containing S and M proteins, and (iii) particles with an envelope containing S, M, and L proteins. Although the resulting S-, SM-, and SML-HDV particles contained both hepatitis delta antigen and HDV RNA, only particles coated with all three envelope proteins (SML) showed evidence of infectivity in an in vitro culture system susceptible to HDV infection. We concluded that the L HBV envelope protein, and more specifically the pre-S1 domain, is important for infectivity of HDV particles and that the M protein, which has been reported to bear a site for binding to polymerized albumin in the pre-S2 domain, is not sufficient for infectivity. Our data also show that the helper HBV is not required for initiation of HDV infection. The mechanism by which the L protein may affect HDV infectivity is discussed herein.  相似文献   

3.
It has previously been shown that human hepatitis virus delta antigen has an RNA-binding activity (Chang et al., J. Virol. 62:2403-2410, 1988). In the present study, the specificity of such an RNA-protein interaction was demonstrated by expressing various domains of the delta antigen in Escherichia coli as TrpE fusion proteins and testing their RNA-binding activities in a Northwestern protein-RNA immunoblot assay and RNA gel mobility shift assay. Hepatitis delta virus (HDV) RNA bound specifically to the delta antigen in the presence of an excess amount of unrelated RNAs and a relatively high salt concentration. Both genome- and antigenome-sense HDV RNAs and at least two different regions of HDV genomic RNA bound to the delta antigen. Surprisingly, these two different regions of HDV genomic RNA could compete with each other for delta antigen binding, although they do not have common nucleotide sequences. In contrast, this binding could not be competed with by other viral or cellular RNA. Since both the genomic and antigenomic HDV RNAs had strong intramolecular complementary sequences, these results suggest that the binding of delta antigen is probably specific for a secondary structure unique to the HDV RNA. By expressing different subdomains of the delta antigen, we found that the middle one-third of delta antigen was responsible for binding HDV RNA. Neither the N-terminal nor the C-terminal domain bound HDV RNA. Binding between the delta antigen and HDV RNA was also demonstrated within the HDV particles isolated from the plasma of a human delta hepatitis patient. This in vivo binding resisted treatment with 0.1% sodium dodecyl sulfate and 0.5% Nonidet P-40. In addition, we showed that the antiserum from a human patient with delta hepatitis reacted with all three subdomains of the delta antigen, indicating that all of the domains are immunogenic in vivo. These studies demonstrated the specific interaction between delta antigen and HDV RNA.  相似文献   

4.
S B Hwang  M M Lai 《Journal of virology》1993,67(12):7659-7662
Hepatitis delta antigen (HDAg) consists of two protein species of 195 and 214 amino acids, respectively, which are identical in sequence except that the large HDAg has additional 19 amino acids at its C terminus and is prenylated. Previous studies have shown that the large HDAg and the surface antigen of hepatitis B virus (HBsAg) together can form empty hepatitis delta virus (HDV) particles. To understand the molecular mechanism of HDV virion morphogenesis, we investigated the possible direct protein-protein interaction between HDAg and HBsAg. We constructed recombinant baculoviruses expressing the major form of HBsAg and various mutant HDAgs and used these proteins for far-Western protein binding assays. We demonstrated that HBsAg interacted specifically with the large HDAg but not with the small HDAg. Using mutant HDAgs which have defective or aberrant prenylation, we showed that this interaction required isoprenylates on the cysteine residue of the C terminus of the large HDAg. Isoprenylation alone, without the remainder of the C-terminal amino acids of the large HDAg, was insufficient to mediate interaction with HBsAg. This study demonstrates a novel role of prenylates in HDV virion assembly.  相似文献   

5.
6.
7.
Jenna S  Sureau C 《Journal of virology》1999,73(4):3351-3358
The carboxyl-terminal domain of the small (S) envelope protein of hepatitis B virus was subjected to mutagenesis to identify sequences important for the envelopment of the nucleocapsid during morphogenesis of hepatitis delta virus (HDV) virions. The mutations consisted of carboxyl-terminal truncations of 4 to 64 amino acid residues and small combined deletions and insertions spanning the entire hydrophobic domain between residues 163 and 224. Truncation of as few as 14 residues partially inhibited glycosylation and secretion of S and prevented assembly or stability of HDV virions. Short internal combined deletions and insertions were tolerated for secretion of subviral particles with the exceptions of those affecting residues 164 to 173 and 219 to 223. However, mutants competent for subviral particle secretion had a reduced capacity for HDV assembly compared to that of the wild type. One exception was a mutant carrying a deletion of residues 214 to 218, which exhibited a twofold increase in HDV assembly (or stability), whereas deletions of residues 179 to 183, 194 to 198, and 199 to 203 were the most inhibitory. Substitutions of single amino acids between residues 194 and 198 demonstrated that HDV assembly deficiency could be assigned to the replacement of the tryptophan residue at position 196. We concluded that assembly of stable HDV particles requires a specific function of the carboxyl terminus of S which is mediated at least in part by Trp-196.  相似文献   

8.
R Prange  R Nagel    R E Streeck 《Journal of virology》1992,66(10):5832-5841
The small envelope S protein of hepatitis B virus carrying the surface antigen has the unique property of mobilizing cellular lipids into empty envelope particles which are secreted from mammalian cells. We studied the biogenesis of such particles using site-directed mutagenesis. In this study, we describe the effect of deletions in the N-terminal hydrophobic and hydrophilic domains of the S protein. Whereas short overlapping deletions of hydrophilic sequences flanking the first hydrophobic domain were tolerated, larger deletions of the same sequences were not. Conversely, the hydrophilic region preceding the second hydrophobic domain was not permissive for even short deletions. Deletion of part or all of the first hydrophobic domain also completely blocked secretion, confirming that the entire apolar region serves an essential function. Most of the secretion-defective deletion mutants still entered the secretory pathway and translocated at least the second hydrophilic domain across the membrane of the endoplasmic reticulum. These mutants appeared to remain arrested in a membrane-associated configuration in the endoplasmic reticulum or the cis-Golgi compartment but preserved their capacity for oligomerization with the wild-type S protein. While secretion of wild-type S protein was specifically blocked by the formation of intracellularly retained mixed envelope aggregates, secretion of an unrelated protein (interleukin 9) was completely unaffected.  相似文献   

9.
Hepatitis delta virus (HDV) particles are coated with the large (L), middle (M), and small (S) hepatitis B virus envelope proteins. In the present study, we constructed glycosylation-defective envelope protein mutants and evaluated their capacity to assist in the maturation of infectious HDV in vitro. We observed that the removal of N-linked carbohydrates on the S, M, and L proteins was tolerated for the assembly of subviral hepatitis B virus (HBV) particles but was partially inhibitory for the formation of HDV virions. However, when assayed on primary cultures of human hepatocytes, virions coated with S, M, and L proteins lacking N-linked glycans were infectious. Furthermore, in the absence of M, HDV particles coated with nonglycosylated S and L proteins retained infectivity. These results indicate that carbohydrates on the HBV envelope proteins are not essential for the in vitro infectivity of HDV.  相似文献   

10.
The outer membrane of the hepatitis B virus consists of host lipid and the hepatitis B virus major (p25, gp28), middle (gp33, gp36), and large (p39, gp42) envelope polypeptides. These polypeptides are encoded by a large open reading frame that contains three in-phase translation start codons and a shared termination signal. The influence of the large envelope polypeptide on the secretion of hepatitis B surface antigen (HBsAg) subviral particles in transgenic mice was examined. The major polypeptide is the dominant structural component of the HBsAg particles, which are readily secreted into the blood. A relative increase in production of the large envelope polypeptide compared with that of the major envelope polypeptide led to profound reduction of the HBsAg concentration in serum as a result of accumulation of both envelope polypeptides in a relatively insoluble compartment within the cell. We conclude that inhibition of HBsAg secretion is related to a hitherto unknown property of the pre-S-containing domain of the large envelope polypeptide.  相似文献   

11.
After cell hijacking and intracellular amplification, non-lytic enveloped viruses are usually released from the infected cell by budding across internal membranes or through the plasma membrane. The enveloped human hepatitis B virus (HBV) is an example of virus using an intracellular compartment to form new virions. Four decades after its discovery, HBV is still the primary cause of death by cancer due to a viral infection worldwide. Despite numerous studies on HBV genome replication little is known about its morphogenesis process. In addition to viral neogenesis, the HBV envelope proteins have the capability without any other viral component to form empty subviral envelope particles (SVPs), which are secreted into the blood of infected patients. A better knowledge of this process may be critical for future antiviral strategies. Previous studies have speculated that the morphogenesis of HBV and its SVPs occur through the same mechanisms. However, recent data clearly suggest that two different processes, including constitutive Golgi pathway or cellular machinery that generates internal vesicles of multivesicular bodies (MVB), independently form these two viral entities.  相似文献   

12.
Jaoudé GA  Sureau C 《Journal of virology》2005,79(16):10460-10466
The infectious particles of hepatitis B virus (HBV) and hepatitis delta virus (HDV) are coated with the large, middle, and small envelope proteins encoded by HBV. While it is clear that the N-terminal pre-S1 domain of the large protein, which is exposed at the virion surface, is implicated in binding to a cellular receptor at viral entry, the role in infectivity of the envelope protein antigenic loop, also exposed to the virion surface and accessible to neutralizing antibodies, remains to be established. In the present study, mutations were created in the antigenic loop of the three envelope proteins, and the resulting mutants were evaluated for their capacity to assist in the maturation and infectivity of HDV. We observed that short internal combined deletions and insertions, affecting residues 109 to 133 in the antigenic loop, were tolerated for secretion of both subviral HBV particles and HDV virions. However, when assayed for infectivity on primary cultures of human hepatocytes or on the recently described HepaRG cell line, virions carrying deletions between residues 118 and 129 were defective. Single amino acid substitutions in this region revealed that Gly-119, Pro-120, Cys-121, Arg-122, and Cys-124 were instrumental in viral entry. These results demonstrate that in addition to a receptor-binding site previously identified in the pre-S1 domain of the L protein, a determinant of infectivity resides in the antigenic loop of HBV envelope proteins.  相似文献   

13.
Hepatitis delta virus requires a helper function from hepatitis B virus for packaging, release, and infection of hepatocytes. The assembly of large delta antigen (HDAg) is mediated by copackaging with the small surface antigen of hepatitis B virus (HBsAg), and the assembly of small HDAg requires interactions with large HDAg. To examine the molecular mechanisms by which small HBsAg, large HDAg, and small HDAg interact, we have established a virion assembly system in COS7 cells by cotransfecting plasmids encoding the small HBsAg, the small HDAg, and large HDAg mutants. Results indicate that sequences within the C-terminal 19-amino-acid domain flanking the Cxxx isoprenylation motif are important for the assembly of large HDAg. In addition, a large HDAg mutant bearing extra sequences separating the C-terminal 19-amino-acid domain from the common regions of the small and large HDAgs is capable, like the wild-type large HDAg, of copackaging with small HBsAg. The ability of assembly is also demonstrated for a large HDAg mutant from which nuclear localization signals have been removed. Furthermore, a cryptic signal within the N-terminal 50 amino acid residues other than the putative N-terminal coiled-coil structure and a subdomain between amino acid residues 50 and 65 of the large HDAg are important for the assembly of small HDAg as well as the trans-dominant negative regulation of large HDAg in hepatitis delta virus replication.  相似文献   

14.
Liu Y  Testa JS  Philip R  Block TM  Mehta AS 《PloS one》2011,6(9):e24477
Hepatitis B virus envelope glycoproteins Large (L), Middle (M) and Small (S) are targets of the host cellular immune system. The extent to which the host recognizes viral antigens presented by infected cells is believed to play a decisive role in determining if an infection will be resolved or become chronic. As with other antigens, HBV envelope polypeptides must be degraded, presumably by cellular proteasomes, to be presented by the MHC I pathway. We have used M as a model to study this process and determine how ER quality control monitors these foreign polymeric proteins and disposes of them through the ER-associated degradation (ERAD) pathway. Using both wild type and mutant HBV M protein, we found that unlike most ERAD substrates, which require ubiquitination for retrotranslocation and degradation, the HBV M protein, which only contains two lysine residues, can undergo rapid and complete, ubiquitin independent, proteasome dependent degradation. The utilization of this pathway had a functional consequence, since proteins degraded through it, were poorly presented via MHC I. To test the hypothesis that the level of ubiquitination, independent of protein degradation, controls the level of antigen presentation, we inserted two additional lysines into both the wild type and mutant M protein. Amazingly, while the addition of the lysine residues dramatically increased the level of ubiquitination, it did not alter the rate of degradation. However and remarkably, the increased ubiquitination was associated with a dramatic increase in the level of antigen presentation. In conclusion, using the HBV surface protein as a model, we have identified a novel ubiquitin independent degradation pathway and determined that this pathway can have implications for antigen presentation and potentially viral pathogenesis.  相似文献   

15.
The C open reading frame of the hepatitis B virus contains two in-frame ATG codons that are separated by the precore region and encodes two major polypeptides that are antigenically distinct and that are probably synthesized from individual mRNAs. The precore region directs the secretion of the e antigen, whereas the core antigen can be expressed in the absence of these sequences. In this report a transient expression system was used to study the hepatitis B virus core antigen. By using a chimeric complex of adenovirus major late promoter-simian virus 40 enhancer sequences, we were able to achieve high levels of core antigen expression in transfected cells, permitting characterization of this protein and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The core polypeptide is a 20.9-kilodalton protein, and we show in this study that it is phosphorylated in vivo. Cell fractionation studies, the results of which are supported by indirect immunofluorescence, localized the phosphocore in the cytosol and the nucleus and indicated that it is associated with the membrane of transfected cells. Results of Triton X-114 solubilization studies indicated that the phosphocore is peripherally associated with cytoplasmic membranes. Expression of the membrane-associated phosphocore occurred in the absence of the precore sequences. The phosphocore also assembled into particles in the absence of other viral gene products or intact DNA.  相似文献   

16.
Although the hepatitis delta virus genome contains multiple open reading frames, only one of these reading frames is known to be expressed during replication of the virus. This open reading frame encodes two distinct molecular species of hepatitis delta antigen (HDAg), p24 delta and p27 delta, depending on the location of the stop codon which terminates translation. We found antibody specific for p27 delta to be capable of precipitating p24 delta in extracts of infected liver, indicating that p27 delta and p24 delta form heterologous complexes in vivo. After cross-linking with 0.05% glutaraldehyde, specific HDAg dimers were detected in antigen prepared from both the liver and serum of an HDV-infected woodchuck carrier of woodchuck hepatitis virus. Guanidine HCl-denatured HDAg extracted from liver and dialyzed against phosphate-buffered saline sedimented in rate-zonal sucrose density gradients as 15S multimeric complexes. These 15S multimers were stable in the presence of 1.2% Nonidet P-40. After RNase digestion, the 15S complex was reduced to a 12S complex without associated RNA, while boiling for 3 min in 1% sodium dodecyl sulfate-0.5% 2-mercaptoethanol further reduced the 15S complex to 3S HDAg monomers. In the absence of glutaraldehyde cross-linking, HDAg extracted from liver migrated as monomer species in reducing and nonreducing gels, suggesting that the conserved cysteine residue present in p27 delta does not play a role in the formation of either dimers or multimers. On the other hand, an amino-terminal chymotrypsin-digested HDAg fragment, with a predicted length of 81 or less amino acids, retained the ability to form dimers, consistent with the hypothesis that a coiled-coil motif present between residues 27 and 58 may play a role in HDAg protein interactions in vivo.  相似文献   

17.
V Bruss  X Lu  R Thomssen    W H Gerlich 《The EMBO journal》1994,13(10):2273-2279
The preS domain at the N-terminus of the large envelope protein (LHBs) of the hepatitis B virus is involved in (i) envelopment of viral nucleocapsids and (ii) binding to the host cell. While the first function suggests a cytosolic location of the preS domain during virion assembly, the function as an attachment site requires its translocation across the lipid bilayer and final exposure on the virion surface. We compared the transmembrane topology of newly synthesized LHBs in the endoplasmic reticulum (ER) membrane with its topology in the envelope of secreted virions. Protease sensitivity and the absence of glycosylation suggest that the entire preS domain of newly synthesized LHBs remains at the cytosolic side of ER vesicles. However, virions secreted from transfected cell cultures or isolated from the blood of persistent virus carriers expose antibody binding sites and proteolytic cleavage sites of the preS domain at their surface in approximately half of the LHBs molecules. Thus, preS domains appear to be transported across the viral lipid barrier by a novel post-translational translocation mechanism to fulfil a dual function in virion assembly and attachment to the host cell.  相似文献   

18.
Hepatitis delta virus (HDV) particles are coated with the envelope proteins (large, middle, and small) of the hepatitis B virus (HBV). The large protein bears an infectivity determinant in its pre-S1 domain, whereas a second determinant has been proposed to map to the cysteine-rich antigenic loop (AGL) within the S domain of all three envelope proteins (G. Abou Jaoudé and C. Sureau, J. Virol. 79:10460-10466, 2006). In this study, the AGL cysteines were substituted by serine or alanine, and the mutants were evaluated for their function at viral entry using HDV particles and susceptible HepaRG cells. Mutations of cysteines 121 to 149 were tolerant of the production of HDV virions. The mutations altered the structure and antigenicity of the conserved “a” determinant of the AGL, as measured by conformation-sensitive antibodies, and they created a block to infectivity. Substitution of Cys-90 or Cys-221, located outside of the AGL, had no impact on the “a” determinant or viral entry. Furthermore, infectivity was maintained when the AGL CxxC motif at position 121 to 124 was modified by single-amino-acid deletion or insertion, suggesting that cysteines 121 and 124 are not catalyzers of thiol/disulfide exchange. However, membrane-impermeable inhibitors of thiol/disulfide isomerazation demonstrated a dose-dependent inhibition of infection in an in vitro assay when applied to the virus prior to inoculation or during the virus-cell interaction period. Overall, the results demonstrate the essential role of the AGL cysteines at viral entry, and they establish a correlation between the cysteine disulfide network, the conformation of the “a” determinant, and infectivity.  相似文献   

19.
The recombinant hepatitis delta virus antigen was obtained as a chimaeric protein fused to the C-terminus of the phage MS2 RNA polymerase. Following induction of the temperature-sensitive promoter, two major polypeptides of about 34 kDa and 29 kDa, and two minor peptides about 21 kDa and 18 kDa, were obtained on PAGE. The 34-kDa protein was identified as the expected recombinant protein by confirming 82% of the primary structure using fast-atom-bombardment mass spectrometry. The most represented degradation product, i.e. the 29-kDa polypeptide, was also characterized by means of mass spectrometry and found to be produced by cleavage between amino acids 261 and 265. The presence of two main protein bands, with a similar difference in size, is also a typical feature of delta antigens, both extracted and recombinant, and it is considered to be derived either from heterogeneity of viral sequences, which can encode hepatitis delta antigen proteins of 195 and 214 amino acids, or from proteolysis of a single precursor. Since the data were obtained with a single viral sequence coding for 195 amino acids fused to 106 residues from MS2 polymerase, there is direct evidence that intrinsic structural properties of the protein sequence are able to cause a specific proteolysis resulting in the presence of two major forms, of which the smaller is 35-40 amino acids at the C-terminus. The recombinant protein can be used as an antigenic substitute of viral antigens both for immunoassays and for the preparation of anti-(hepatitis delta virus) antisera.  相似文献   

20.
The small hepatitis B virus surface antigen (S-HBsAg) is capable of driving the assembly and secretion of hepatitis delta virus (HDV) particles by interacting with the HDV ribonucleoprotein (RNP). Previously, a specific domain of the S-HBsAg protein carboxyl terminus, including a tryptophan residue at position 196 (W196), was proven essential for HDV maturation (S. Jenna and C. Sureau, J. Virol. 73: 3351-3358, 1999). Mutation of W196 to phenylalanine (W196F) was permissive for HBV subviral particle (SVP) secretion but deleterious to HDV virion assembly. Here, the W196F S-HBsAg deficiency was assigned to a loss of its ability for interaction with the large HDV antigen (L-HDAg), a major component of the RNP. Because the overall S-HBsAg carboxyl terminus is particularly rich in tryptophan, an amino acid frequently involved in protein-protein interactions, site-directed mutagenesis was conducted to investigate the function of the S-HBsAg Trp-rich domain in HDV assembly. Single substitutions of tryptophan between positions 163 and 201 with alanine or phenylalanine were tolerated for SVP secretion, but those affecting W196, W199, and W201 were detrimental for HDV assembly. This was proven to result from a reduced capacity of the mutants for interaction with L-HDAg. In addition, a W196S S-HBsAg mutant, which has been described in HBV strains that arose in a few cases of lamivudine-treated HBV-infected patients, was deficient for HDV assembly as a consequence of its impaired capacity for interacting with L-HDAg. Interestingly, the fact that even the most conservative substitution of phenylalanine for tryptophan at positions 196, 199, or 201 was sufficient to ablate interaction of S-HBsAg with L-HDAg suggests that W196, W199, and W201 are located at a binding interface that is central to HDV maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号