首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel lower head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe Pressurized Water Reactor (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for in-vessel retention (IVR), resulted in the United States Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing Light Water Reactors (LWRs). Accordingly, IVR of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors. However, it is not clear that currently-proposed methods to achieve ERVC will provide sufficient heat removal for higher power reactors. A US–Korean International Nuclear Energy Research Initiative (INERI) project has been initiated in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) will determine if IVR is feasible for reactors up to 1500 MWe. This paper summarizes results from the first year of this 3-year project.  相似文献   

2.
The in-vessel melt retention becomes an important safety objective for the present or future middle power nuclear plants, so care has to be taken in the evaluation of the various phenomena related to ensuring the feasibility of this objective. Since the prediction of the relevant phenomena has to be performed for the prototypical accident conditions, the applicability of the measured data or of the correlations derived from these measurements have to be established and the uncertainties determined. In this context, most uncertainties are introduced by the non-prototypicalities in the experiments. The paper describes the major findings from the OECD RASPLAV project and discusses the remaining challenges left in the area of in-vessel molten corium coolability.  相似文献   

3.
This paper presents methods to compute J-integral values for cracks in two- and three-dimensional thermo-mechanical loaded structures using the finite element code ANSYS. The developed methods are used to evaluate the behavior of a crack on the outside of an emergency cooled reactor pressure vessel (RPV) during a severe core melt down accident. It will be shown, that water cooling of the outer surface of a RPV during a core melt down accident can prevent vessel failure due to creep and ductile rupture. Further on, we present J-integral values for an assumed crack at the outside of the lower plenum of the RPV, at its most stressed location for an emergency cooling (thermal shock) scenario.  相似文献   

4.
Nanofluids, colloidal dispersions of nanoparticles, exhibit a substantially higher critical heat flux (CHF) compared to water. As such, they could be used to enhance the in-vessel retention (IVR) capability in the severe accident management strategy implemented by certain light-water reactors. It is envisioned that, at normal operating conditions, the nanofluid would be stored in dedicated storage tanks, which, upon actuation, would discharge into the reactor cavity through injection lines. The design of the injection system was explored with risk-informed analyses and computational fluid dynamics. It was determined that the system has a reasonably low failure probability, and that, once injected, the nanofluid would be delivered effectively to the reactor vessel surface within seconds. It was also shown analytically that the increase in decay power removal through the vessel using a nanofluid is about 40%, which could be exploited to provide a higher IVR safety margin or, for a given margin, to enable IVR at higher core power. Finally, the colloidal stability of a candidate alumina-based nanofluid in an IVR environment was experimentally investigated, and it was found that this nanofluid would be stable against dilution, exposure to gamma radiation, and mixing with boric acid and lithium hydroxide, but not tri-sodium phosphate.  相似文献   

5.
This paper reports the results from the experiments conducted on the coolability of corium melt during a severe accident scenario when the bottom head is full of the core melt, undergoing natural circulation. These experiments are part of the EC-FOREVER Program in which vessel failure experiments have also been performed. The experiments are performed in a 1/10th scale vessel (400 mm diameter and 15 mm wall thickness) and the oxidic melt employed is the mixture CaO + B2O3 at 1400 K, representing the corium melt mixture of UO2 + ZrO2.The experiments employed an initial phase, during which uniform volumetric heating of the melt was provided and the vessel was pressurised to 25 bar, for several hours, to generate maximum creep deformation of 5%, in order to provide the conditions for the formation of a gap between the melt-pool crust and the bottom head wall. After this phase, the vessel was flooded with water.Data were obtained on only the vessel and the melt pool temperatures in one of the EC-FOREVER experiments reported here. In the second experiment, however, besides the temperature data, additional data were obtained on the steam flow rate and the heat transfer to the water, at the upper face of the melt pool, as a function of time.It was found that the gap cooling mechanism was not effective in reducing the vessel wall temperatures after water flooding. Post-test examinations revealed that the water ingression extended to the depth of only 60 mm in the melt pool. The character of the heat transfer to the water from the melt pool upper surface was found to be similar to that observed in the MACE tests for the coolability of an ex-vessel melt pool flooded by water at the top.  相似文献   

6.
7.
8.
The ACOPO experiment simulates natural convection heat transfer from volumetrically heated pools at a half-scale reactor lower head geometry (hemispherical). New data for internal Rayleigh numbers of up to 1016 are presented, correlated and discussed, in relation to other available correlations. These ACOPO results confirm a key component of the in-vessel retention severe accident management strategy for an AP600-like design, as recently established in DOE/ID-10460.  相似文献   

9.
In order to enhance the feasibility of in-vessel retention (IVR) of molten core material during a severe accident for high-power reactors, an in-vessel core catcher (IVCC) was designed and evaluated as part of a joint United States-Korean International Nuclear Energy Research Initiative (INERI). The proposed IVCC is expected to increase the thermal margin for success of IVR by providing an “engineered gap” for heat transfer from materials that relocate during a severe accident and potentially serving as a sacrificial material under a severe accident. In this study, LAVA-GAP experiments were performed to investigate the thermal and mechanical performance of the IVCC using the alumina melt as simulant. The LAVA-GAP experiments aim to examine the feasibility and sustainability of the IVCC under the various test conditions using 1/8th scale hemispherical test sections. As a feasibility test of the proposed IVCC in this INERI project, the effects of IVCC base steel materials, internal coating materials, and gap size between the IVCC and the vessel lower head were examined. The test results indicated that the internally coated IVCC has high thermal performance compared with the uncoated IVCC. In terms of integrity of the base steel, carbon steel is superior to stainless steel and the effect of bond coat is found to be trivial for the tests performed in this study. The thermal load is mitigated via boiling heat removal in the gap between the IVCC and the vessel lower head. The current test results imply that gaps less than 10 mm are not enough to guarantee effective cooling induced by water ingression and steam venting there through. Selection of endurable material and pertinent gap size is needed to implement the proposed IVCC concept into advanced reactor designs.  相似文献   

10.
In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by most operating nuclear power plants and advanced light water reactors (ALWRs), AP600, AP1000, etc. External reactor vessel cooling (ERVC) is a novel severe accident management for IVR analysis. In present study, IVR analysis code in severe accident (IVRASA) has been developed to evaluate the safety margin of IVR in AP1000 with anticipative depressurization and reactor cavity flooding in severe accident. For, IVRASA, the point estimate procedure has been developed for modeling the steady-state endpoint of two core melt configurations: Configuration I and Configuration II. The results of benchmark calculations of AP600 by IVRASA were consistent with those of the UCSB and INEEL. Then, IVRASA is used to calculate the heat transfer process caused by two core melt configurations of AP1000. The results of calculations of Configuration I indicate that the heat flux remains below the critical heat flux (CHF), however, the sensitivity calculations show that the heat flux in the metallic layer could exceed the CHF because of the focusing effect due to the thin metallic layer. On the other hand, the results of calculations of Configuration II suggest that the thermal failure of the lower head at the bottom location is highly unlikely, but the heat flux in light metallic layer could be higher than that of base case due to the portion of metal partitioning into the lower head. This work also investigated the effect of the uncertainties of the CHF correlations on the analysis of IVR.  相似文献   

11.
12.
13.
14.
《Annals of Nuclear Energy》2001,28(12):1237-1250
A consistent probabilistic approach is proposed to evaluate the feasibility of in-vessel retention of the molten corium through external reactor vessel cooling (IVR-ERVC) during severe accidents of pressurized water reactors (PWRs). By combining the results of Level-1 probabilistic safety assessment, a critical heat flux correlation, and wall heat flux distributions calculated by a severe accident code with appropriate adjustment, we can reasonably predict the overall success probability of the IVR-ERVC from the viewpoint of thermal failure. The practicability of the proposed approach is illustrated with a preliminary application to the Korean Standard Nuclear Power Plant. This paper also discusses future developmental needs for more reliable assessment.  相似文献   

15.
16.
17.
18.
Different containment concepts have been proposed for High Temperature Reactors. In the paper the confinement, the gastight pressurized containment and the vented confinement are discussed. For a small HTR such as the Modul it seems to be possible to provide a vented confinement instead of a gastight containment. The German Reactor Safety Commission has given a positive statement. Due to the specific safety characteristics of the HTR the safety concepts can differ in part quite considerably from current LWR standard solutions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号