首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zinc oxide (ZnO) nanoparticles coated with 1–5 wt% Bi2O3 were prepared by precipitating a Bi(NO3)3 solution onto a ZnO precursor. Transmission electron microscopy showed that a homogeneous Bi2O3 layer coated the surface of the ZnO nanoparticles and that the ZnO particle size was ∼30–50 nm. Scanning electron microscopy showed that ZnO grains sintered at 1150°C were homogeneous in size and surrounded by a uniform Bi2O3 layer. When the ZnO grains were surrounded fully by Bi2O3 liquid phases, further increases in the ZnO grain size were not affected by the Bi2O3 content. This predesigned ZnO nanoparticle structure was shown to promote homogeneous ZnO grains with perfect crystal growth.  相似文献   

2.
Detailed analysis of the microstructure of grain boundaries, especially triple-grain and multiple-grain junctions, in ZnO varistor materials has been performed using transmission electron microscopy. Different polymorphs of Bi2O3 are shown to exhibit different wetting properties on ZnO interfaces. Recent investigations suggest that the equilibrium configuration consists of crystalline Bi2O3 in the triple-grain and multiple-grain junctions and an amorphous bismuth-rich film in the ZnO/ZnO grain boundaries. The present investigation supports this suggestion for δ-Bi2O3 and also adds to the microstructural image and wetting properties of α-Bi2O3.  相似文献   

3.
Transformational plasticity associated with the monoclinic-to-cubic phase transition at 730°C in Bi2O3 was observed and characterized. This phenomenon is explained in terms of Greenwood and Johnson's model of internal stress-induced deformation, proceeding, in this instance, by a time-dependent, grain-size-sensitive creep mechanism, probably grain-boundary sliding. Criteria are proposed for choosing other prospective transformationally plastic ceramics; they are met by Bi2WO6, which also exhibits extensive transformation plasticity.  相似文献   

4.
Glasses with compositions 50Bi2O3– x Sb2O3–10B2O3–(40– x ) SiO2 ( x =0, 1, 3, 5, 8, 10) have been prepared by conventional melt quench technique. Substitution of Sb2O3 for SiO2 exerted an obvious effect on properties of glasses, especially, increased glass transition temperature ( T g) and crystalline temperature ( T c) greatly. Results of infrared transmission spectra attributed the effect to the formation of new bridging bonds of Sb–O–B and Sb–O–Si in glass network.  相似文献   

5.
Effects of excess Bi2O3 content on formation of (Bi3.15Nd0.85)Ti3O12 (BNT) films deposited by RF sputtering were investigated. The microstructures and electrical properties of BNT thin films are strongly dependent on the excess Bi2O3 content and post-sputtering annealing temperature, as examined by XRD, SEM, and P – E hysteresis loops. A small amount of excess bismuth improves the crystallinity and therefore polarization of BNT films, while too much excess bismuth leads to a reduction in polarization and an increase in coercive field. P – E loops of well-established squareness were observed for the BNT films derived from a moderate amount of Bi2O3 excess (5 mol%), where a remanent polarization 2P r of 25.2 μC/cm2 and 2E c of 161.5 kV/cm were shown. A similar change in dielectric constant with increasing excess Bi2O3 content was also observed, with the highest dielectric constant of 304.1 being measured for the BNT film derived from 5 mol% excess Bi2O3.  相似文献   

6.
The mechanism of parahydrogen conversion was studied on Gd2O3 and Y2O3 powders and on Gd and Y evaporated metal films at low and high temperatures (77° to 90°K and 298° to 418°K). Absolute rates of conversion are compared to theoretical values for 3 possible reaction mechanisms, and it is concluded that a paramagnetic vibrational mechanism is operative on Gd2O3, Gd, and Y. On Y2O3 the reaction rate is enhanced by additional surface paramagnetic sites. The portion of the surface which is active is ∼1 for the metals and ∼0.01 for the oxides.  相似文献   

7.
Solid-state reactions of equimolar mixtures of Bi2O3 and Fe2O3 from 625° to 830°C and their kinetics were investigated. The reaction rates were determined from the integrated X-ray diffraction intensities of the strongest peaks of the reactants and products. The activation energy for the formation of BiFeO3 was 96.6±9.0 kcal/mol; that for a second-phase compound, Bi2Fe4O9, which formed above 675°C, was 99.4±9.0 kcal/mol. Specific rate constants for these simultaneous reactions were obtained. The preparation of single-phase BiFeO3 from the stoichiometric mixture of Bi2O3 and Fe2O3 is discussed.  相似文献   

8.
Our analysis of the microwave dielectric properties of the δ-Bi2O3–Nb2O5 solid solution (δ-BNss) showed a continuous increase in permittivity and dielectric losses with an increasing concentration of Nb2O5. The only discontinuity was found for the temperature coefficient of resonant frequency, which is negative throughout the entire homogeneity range but reaches a minimum value for the sample with 20 mol% Nb2O5. At the same composition there is a discontinuity in the grain size of the δ-BNss ceramics. For the sample containing 25 mol% Nb2O5 two structural modifications were observed. A single-phase tetragonal Bi3NbO7, in the literature referred to as a Type-III phase, is formed in a very narrow temperature range from 850° to 880°C. A synthesis performed below or above this temperature range resulted in the formation of the end member of the δ-BNss homogeneity range. Compared with the δ-BNss the Bi3NbO7 ceramics exhibit lower microwave dielectric losses, an increased conductivity, and a positive temperature coefficient of resonant frequency.  相似文献   

9.
High-performance Ba2Ti9O20 ceramics are attracting great attention, but their formation mechanism still is somewhat unclear. The present investigation shows that the formation of Ba2Ti9O20 can be promoted strikingly by the participation of Bi2O3 and Al2O3. The effect of Bi2O3 on the formation of Ba2Ti9O20 is attributed to the fact that migration of the involved reactants is accelerated by liquid which forms from the melting of Bi2O3 above 830°C. This migration, however, is not the only rate-limiting factor. A high potential-energy barrier, resulting from stress that arises along the crystal-structured layers, also heavily restricts the formation of Ba2Ti9O20. The participation of Al2O3, on the other hand, can reduce the height of this potential-energy barrier and effectively improve the kinetics of the formation of Ba2Ti9O20 by causing the formation of BaAI2Ti6O16 crystals; these crystals intergrow with Ba2Ti9O20 crystals and result in decreased stress.  相似文献   

10.
The Bi2O3-rich side of the system Bi2O3-SiO2 was studied with powder X-ray diffraction and differential thermal analysis. In the composition 6Bi2O3. x SiO2, the metastable γ phase (bcc) was observed to exist over the range of 0 < x ≤ 1. In most of the compositions studied, metastable phases of water-quenched melts transformed into another metastable phase before reaching stable phases. A modification of the phase diagram is proposed.  相似文献   

11.
Liquid-phase sintering of MgO-5 wt% Bi2O3 was studied by loading dilatometry. The ratio of the creep viscosity to the densification viscosity (∼1.8) and the sintering stress remained nearly constant in a wide density interval. These results, together with results on several other systems, indicate that the constancy of the sintering stress during densification may be a general phenomenon, regardless of densification mechanism.  相似文献   

12.
Transformational superplasticity associated with the eutectoid reaction in the Bi2O3-Sm2O3 system was observed and characterized in hypoeutectoid and hypereutectoid compositions. Transformational strain varied linearly with applied stress and exhibited a stress-axis intercept, or threshold stress, that is related to the proeutectoid microconstituent. Results are explained quantitatively using the analysis by Greenwood and Johnson and a creep mechanism.  相似文献   

13.
in a recent article of the Journal , Yu et al .1 reported their experimental results on the effect of Al2O3 and Bi2O3 on the formation mechanism of Sn-doped Ba2Ti9O20. They claimed that both Al2O3 and Bi2O3 can dramatically assist the formation of Sn-doped Ba2Ti9O20 but are based on different mechanisms. They concluded that first, Bi2O3 melts above 830°C and accelerates the migration of the involved reactants to form Ba2Ti9O20; second, Al2O3 can reduce the height of the potential energy barrier of the formation of Ba2Ti9O20 due to the intergrowth of BaAl2Ti6O16 phase. They explained their results from a point of view that the formation of Ba2Ti9O20 is controlled by (1) the migration of reactants to the interfaces and (2) the height of the potential-energy barrier of the reaction at the interfaces. However, based on their results, we feel their conclusions are incautious and may be misleading, as will be discussed later.  相似文献   

14.
15.
Vaporization of Bi2O3 in microwave-sintered ZnO varistors is discussed in this study. The Bi2O3 vaporization of ZnO varistors sintered by a conventional electric furnace is also studied for comparison. The results show that the Bi2O3 vaporization in microwave-sintered ZnO varistors is more homogenous from the surface to the inside of the sample, which results from the special thermal gradient inside the microwave-sintered samples, and we also find out that the Bi2O3 vaporization directly affects the electrical properties of ZnO varistors. Microwave-sintered samples exhibit more excellent electrical properties than the conventional ones because the homogenous Bi2O3 vaporization leads to more uniform microstructures.  相似文献   

16.
Phase relations in the system Bi2O3-WO3 were studied from 500° to 1100°C. Four intermediate phases, 7Bi2O3· WO3, 7Bi2O3· 2WO3, Bi2O3· WO3, and Bi2O3· 2WO3, were found. The 7B2O · WO3 phase is tetragonal with a 0= 5.52 Å and c 0= 17.39 Å and transforms to the fcc structure at 784°C; 7Bi2O3· 2WO3 has the fcc structure and forms an extensive range of solid solutions in the system. Both Bi2O3· WO3 and Bi2O3· 2WO3 are orthorhombic with (in Å) a 0= 5.45, b 0=5.46, c 0= 16.42 and a 0= 5.42, b 0= 5.41, c 0= 23.7, respectively. Two eutectic points and one peritectic exist in the system at, respectively, 905°± 3°C and 64 mol% WO3, 907°± 3°C and 70 mol% WO3, and 965°± 5°C and 10 mol% WO3.  相似文献   

17.
Gd2O3-doped Bi2O3 polycrystalline ceramics containing between 2 and 7 mol% Gd2O3 were fabricated by pressureless sintering powder compacts. The as-sintered samples were tetragonal at room temperature. Hightemperature X-ray diffraction (XRD) traces showed that the samples were cubic at elevated temperatures and transformed into the tetragonal polymorph during cooling. On the basis of conductivity measurements as a function of temperature and differential scanning calorimetry (DSC), the cubic → tetragonal as well as tetragonal → cubic → teansition temperatures were determined as a function of Gd2O3 concentration. The cubic → tetragonal transformation appears to be a displacive transformation. It was observed that additions of ZrO2 as a dopant, which is known to suppress cation interdiffusion in rare-earth oxide–Bi2O3 systems, did not suppress the transition, consistent with it being a displacive transition. Annealing of samples at temperatures 660°C for several hundred hours led to decomposition into a mixture of monoclinic and rhombohedral phases. This shows that the tetragonal polymorph is a metastable phase.  相似文献   

18.
The phase diagram for the system Bi2O3-B2O3 has been determined experimentally. The melting point of Bi2O3 has been redetermined as 825° C with an estimated overall uncertainty of about ±3°C, and the molal heat of fusion of Bi2O3, calculated from the slope of the liquidus curve, is 2050 cal per mole. The system contains a body-centered cubic phase of approximate composition 12Bi2O3·B2O3, which melts incongruently at 632°C. Four congruently melting compounds exist in the system: 2Bi2O3· B2O3·5B2O3, Bi2O3·3B2O3, and Bi2O3·4B2O3, with melting points, respectively, of 675°, 722°, 708°, and 715°C. The Bi2O3·4B2O3 compound exhibits a sluggish transformation at 696°C. Compositions containing up to 97.5 wt% (85 mole %) Bi2O3 can be partly or totally quenched to glass. Indices of the quenched glasses are greater than 1.74. A region of liquid immiscibility extends at 709°C from almost pure B2O3 to 19.0 mole % Bi2O3. The extent of immiscibility theoretically calculated agrees with the experimentally determined value when 1.20 A is used for the ionic radius of Bi3+.  相似文献   

19.
20.
The effect of the addition of Bi2O3 on the densification, low-temperature sintering, and electromagnetic properties of Z-type planar hexaferrite was investigated. The results show that Bi2O3 additives can improve the densification and promote low-temperature sintering of Z-type hexaferrite prepared by a solid-state reaction method. The presence of Bi2O3 in the grain boundaries and the generation of Fe2+ degrade the initial permeability of the samples but make the quality factor and cut-off frequency increase. Various possible mechanisms involved in generating these effects were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号