首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
缸盖冷却水的单相流沸腾模型   总被引:5,自引:0,他引:5  
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种单相流沸腾模型。模型认为流动沸腾总传热量等于泡核沸腾和单相对流传热之和,其中泡核沸腾传热计算采用修正后的容积沸腾传热计算公式。BDL模型在Chen模型的基础上作了改进,考虑了冷却水局部流动参数及饱和状态的影响,适用于局部流动传热计算。  相似文献   

2.
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种单相流沸腾模型.模型认为流动沸腾总传热量等于泡核沸腾和单相对流传热之和,其中泡核沸腾传热计算采用修正后的容积沸腾传热计算公式.BDL模型在Chen模型的基础上作了改进,考虑了冷却水局部流动参数及饱和状态的影响,适用于局部流动传热计算.  相似文献   

3.
计算对比了不考虑沸腾和考虑沸腾2种冷却系统数值模拟计算,得出结论:考虑沸腾传热对内燃机冷却水腔内流动与压力的分布影响不明显,而对冷却水腔内传热过程的影响是很大的。若只考虑纯对流传热,计算结果可能与实际情况存在很大的差异。因此,在对强化内燃机进行流动与传热问题的研究时必须考虑沸腾传热的因素,以获得更为真实、准确的结果。  相似文献   

4.
发动机冷却水腔内沸腾传热的模拟研究   总被引:1,自引:0,他引:1  
从单相流观点出发研究了两种计算过冷流动沸腾传热的思路:分区描述法和叠加计算法.提出了两个基于分区描述法的沸腾模型A和沸腾模型B;修正了基于叠加计算法的Chen沸腾模型和BDL沸腾模型中对流传热项的计算方法.利用这些沸腾模型进行了缸盖鼻梁区冷却水腔沸腾传热的数值模拟,并与试验结果进行了对比分析.结果表明:采用分区描述法和叠加计算法进行发动机冷却水腔内过冷流动沸腾传热计算均是可行且有效的方法;采用沸腾模型A和修正的BDL模型的预测精度比另两个沸腾模型要高;提高流速和过冷度均能强化沸腾传热的能力,提高压力后则在更高的壁面温度下才出现沸腾传热.  相似文献   

5.
针对缸盖水腔内的冷却水流动沸腾传热计算,本文介绍了两种沸腾传热模型。模型认为流动沸腾总传热量等于泡核沸腾和单相流对流传热之和,介绍了常用的Chen模型,然后介绍了一种基于加权叠加方法基础上的。计算过冷流动沸腾传热的新模型Franz模型。  相似文献   

6.
王银  欧阳光耀  刘琦  张萍 《柴油机》2015,37(4):28-32
基于Chen模型研究了柴油机模拟冷却水腔内的沸腾传热,并与试验数据进行对比,验证了模型的适用性,并将此模型应用于柴油机缸盖及冷却水套内的耦合传热计算。计算结果表明:沸腾传热可有效提高冷却水的换热能力,降低冷却水套壁面局部高温区域的温度,降低缸盖本体的温度梯度,从而降低缸盖热负荷及热应力;考虑沸腾时,缸盖局部温度点仿真计算结果与试验结果误差更小。  相似文献   

7.
实验研究了梯度孔密度通孔金属泡沫的池沸腾传热性能。工质为去离子水,梯度孔密度金属泡沫材质为铜和镍, 孔隙率为0.98,泡沫厚度为4-14 mm。实验结果表明:相比于单层泡沫,梯度孔密度金属泡沫显著的增强了沸腾传热能力,但增强程度受孔密度变化梯度、泡沫厚度和材料的影响;梯度孔密度泡沫的池沸腾传热性能随着表面活性剂SDS浓度的增大而减小,而且SDS降低了梯度孔密度金属泡沫的临界热流密度; 添加Al2O3纳米颗粒严重的削弱了梯度孔密度铜泡沫的池沸腾传热能力。  相似文献   

8.
柴油机非水冷却介质自然对流沸腾传热特性的研究   总被引:1,自引:0,他引:1  
对于采用非水冷介质的高温冷却水及少冷却柴油机的研究,目前尚需了解冷却介质温度的提高,及冷却介质的性质差异,对柴油机的传热及零部件热状况的影响。本模拟柴油机工作条件,对机油,柴油及不同配比的乙二醇水溶液等液体的自然对流沸腾热特性进行了试验研究,揭示了各种因素对传热的影响,通过对试验数据的回归分析得出了3种非水冷却介质自然对流沸腾传热关系式。  相似文献   

9.
基于VC 6.0开发了一种单相流沸腾传热模型,通过引入空泡份额的概念将沸腾发生时的流场看作一个气液均匀混合的单相流,从数学上对该模型进行了描述并介绍了模型的数值实现方法.通过与试验结果的对比,表明模型适用于缸盖冷却水腔内沸腾传热计算.试验和计算结果还表明,压力对沸腾传热的影响较为明显.最后以226B型发动机水腔为工程应用对象,计算出了水腔内的空泡份额分布和水腔内的流速分布情况.  相似文献   

10.
基于VC 6.0开发了一种单相流沸腾传热模型,通过引入空泡份额的概念将沸腾发生时的流场看作一个气液均匀混合的单相流,从数学上对该模型进行了描述并介绍了模型的数值实现方法。通过与实验结果的对比,表明模型适用于缸盖冷却水腔内沸腾传热计算。实验和计算结果还表明,压力对沸腾传热的影响较为明显。最后以226B型发动机水腔为工程应用对象,计算出了水腔内的空泡份额分布和水腔内的流度分布情况。  相似文献   

11.
An experimental study has been carried out for estimating surface temperature and heat flux during both a transient heating process from nucleate boiling to film boiling and a cooling process in the reverse direction. Experiments were at atmospheric pressure, and calculations used a newly developed inverse solution. Three different materials, gold, copper, and brass, were employed to make clear the effect of thermal properties on the boiling curves in the transient region including the maximum and minimum heat fluxes. It was determined that the histories of surface temperature and heat flux for the transition boiling region during either heating or cooling process can be tracked well. The experiment shows that hysteresis exists in the heating and cooling processes for the transition region while no hysteresis exists in the nucleate boiling region, except that the maximum heat fluxes reached during the heating and cooling processes are much different. It was found that the characteristics for the heating process are minimally influenced by thermal properties, while characteristics of the cooling process are greatly affected. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(1): 20–34, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20097  相似文献   

12.
Correlation equations for saturated and subcooled film boiling heat transfer from a downward-facing horizontal circular plate are proposed based on a theoretical study using an integral method. For the case of subcooled liquids, a dimensionless heat transfer parameter is introduced to effectively correlate within ±15% the experimental data obtained under both quenching and steady-state conditions. © 1998 Scripta Technica, Heat Trans Jpn Res, 26(7): 459–468, 1997  相似文献   

13.
The drying process of a macrolayer on a 15 mm diameter boiling surface was observed with high speed video in the region of nucleate and of transition boiling close to the critical heat flux (CHF). It was found that the macrolayer rests beneath a large vapor mass. It partially dries in nucleate boiling and completely dries in transition boiling at the detachment of the vapor mass. The macrolayer thickness at CHF and in transition boiling was determined on the basis of the energy balance relation proposed by Katto and Yokoya. The macrolayer thickness at low heat flux was obtained by decreasing CHF with downward-facing heating surfaces and agreed well with the correlation proposed previously by the present authors. The macrolayer thickness in transition boiling with a vertical surface also agrees fairly well with the correlation, when the heat flux at macrolayer formation, given on the nucleate boiling curve, is extrapolated to surface superheat of transition boiling and when the surface temperature at macrolayer formation is equal to a time-averaged value. © 1998 Scripta Technical, Heat Trans Jpn Res, 27(2): 155–168, 1998  相似文献   

14.
Using MEMS technology, a Pt microheater (60 × 100 µm2) fabricated on a glass wafer is placed in a silicon-based microchannel of trapezoidal cross section. With the aid of a high-speed CCD and based on Pt's linear temperature-resistance characteristic, flow boiling phenomena and temperature response on the surface of the microheater in the microchannel under pulse heating are observed and recorded. At a given mass flux, nucleate boiling and film boiling begin to appear on the microheater with increasing heat flux. A flow boiling map, showing the effects of heat and mass flux on nucleate and film boiling regimes on the microheater at a pulse heating width of 2 ms, is presented. It is found that nucleate boiling is changed to film boiling as the heat flux supplied to the microheater is increased. Furthermore, increasing mass flux increases the heat flux required for the incipience of nucleate boiling and film boiling on the microheater in the microchannel.  相似文献   

15.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998  相似文献   

16.
This study examines both high-flux flow boiling and critical heat flux (CHF) under highly subcooled conditions using FC-72 as working fluid. Experiments were performed in a horizontal flow channel that was heated along its bottom wall. High-speed video imaging and photomicrographic techniques were used to capture interfacial features and reveal the sequence of events leading to CHF. At about 80% of CHF, bubbles coalesced into oblong vapor patches while sliding along the heated wall. These patches grew in size with increasing heat flux, eventually evolving into a fairly continuous vapor layer that permitted liquid contact with the wall only in the wave troughs between vapor patches. CHF was triggered when this liquid contact was finally halted. These findings prove that the CHF mechanism for subcooled flow boiling is consistent with the interfacial lift-off mechanism proposed previously for saturated flow boiling.  相似文献   

17.
In water-cooled nuclear reactors, the maximum power which can be extracted from the core is limited by critical heat flux (CHF). CHF in the high-quality region is known as dryout. In advanced nuclear reactors, the coolant flow occurs solely by virtue of natural circulation; however, instabilities may occur during off-normal operations. This may lead to premature dryout due to lower coolant flow rates seen by the heater during such oscillations. This paper describes the experimental investigation on the effect of flow oscillations on the CHF with the time period of 120 s, which is observed typically in the large-scale natural circulation system. Based on observations made with respect to temperature transient, the continuous dryout is preceded by the transient dryout for higher flow oscillations. But as flow fluctuation decreases, the transient dryout phenomenon is found to disappear. The applicability of the look-up table to predict CHF under oscillatory flow conditions using suitable correction factors (CFs) for premature dryout has been evaluated. CFs for the CHF under oscillations suggested by previous authors have been compared. The maximum possible degradation in CHF value suggested by previous authors has been found to agree with the present experimental data. Percentage fluctuation in heat transfer coefficient (HTC) at fully developed annular flow conditions has been evaluated, and it is found that fluctuation in HTC is in phase with the fluctuation in flow.  相似文献   

18.
Forced convection boiling of subcooled water was performed in a horizontal rectangular channel with the heated surface on the bottom. The experiment was conducted for heating surfaces, 10, 20, or 40 mm in length. Microbubble emission boiling (MEB) was observed in subcooled transition boiling and was easy to generate for the shorter heating surfaces. In higher flow velocity of subcooled water, MEB was generated at even lower subcooling. Stormy MEB was observed at both the higher subcooling and the higher flow velocity of water. In the stormy MEB, the heat flux rose rapidly above the critical heat flux with larger acoustic noise and vibration. © 2001 Scripta Technica, Heat Trans Asian Res, 30(5): 426–438, 2001  相似文献   

19.
SurfacesInvestigationofEnhancedBoilingHeatTransferfromPorousSurfaces¥LinZhiping;MaTongze;ZhangZhengfang(InstituteofEngineerin...  相似文献   

20.
In the current study, as per the requirement of various metal quenching industries, high heat removal rate, low consumption rate of the coolant, and the minimum operating cost of the process have been tried to be achieved in the Leidenfrost region by using a nanofluid low mass flux laminar jet. In this regard, an indigenously designed and fabricated experimental setup was used and before experimentation, the coolant (Al2O3+Water) thermophysical properties variation was monitored for the mapping of the transfer characteristics during the cooling process. The thermal analysis discloses that the critical heat flux (CHF) depicts a trend with the rising nanoparticle concentration in the mixture; however, at the medium concentration (0.10% Al2O3) except the CHF region, in the remaining region, better heat removal rate is observed. The comparison of the current cooling methodology with that reported in literature clearly approves that the proposed process methodology mitigates the requirements described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号