首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据对广西象州大乐泥盆系剖面沉积序列特征的分析,将该剖面大乐组划分为2个三级层序(SQ1、SQ2),并分别将其与区域上的典型剖面进行了对比,特别与黔南独山同期地层进行了对比。结果表明,这一时期的海平面变化对区域上的沉积序列具有明显的控制作用,而SQ2高位体系域所沉积的生物礁序列为海退背景下的进积序列,这一研究成果为油气地质调查中生物礁储层的预测提供了理论依据。  相似文献   

2.
3.
4.
中巴公路沿线溜石坡   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
7.
8.
9.
《地球科学进展》2014,29(1):15-22
By illustrating the relationship between the climate system and the scientific data, a requirement of scientific data for the earth system research has been proposed to be paid more attention to climate change studies. The research progresses of global climate change in China for the recent 10 years have been reviewed and the important role of observation datasets and assimilated production in the global climate change has been pointed out. Furthermore, the meteorological data sharing situation  相似文献   

10.
11.
12.
13.
14.
15.
As a connection region between North Atlantic and Arctic Oceans, the Nordic Sea plays a critical role in global climate system. In the Nordic Seas, surface water converts into intermediate water and deep water after cooling and other effects. These waters transport southward, and enter into North Atlantic as a form of overflow, therefore, they are the main source of the North Atlantic Deep Water(NADW), which play a key role in global ocean conveyor. The causes and processes of the deep water formation in the Nordic Seas are still uncertain. Based on a review of current and historical research results of the deep water in the Nordic Seas, the most important process for deep water formation convection is addressed. Factors and physical processes that may have impact on deep water formation are summarized. The transport of deep water in the Nordic Seas is summed up. Multi year variation of the deep water is described with the aim of giving some instructions and research directions to the readers.  相似文献   

16.
生物炭对土壤理化性质影响的研究进展   总被引:10,自引:0,他引:10  
Biochar is an organic material with high carbon content, most aromatic structure and great stability resulting from high temperature thermal conversion (usually < 700 ℃) of organic materials under the completely or in part anoxic condition. Due to its stable chemical properties, biochar has received widely attention as a strategy to reduce greenhouse gas emissions. In addition, biochar shows great potential in soil improvement and environmental pollution remediation, and provides a comprehensive solution for the global climate change, food crisis and ecological pollution remediation. Biochar is a carbon rich material, in association with porous characteristics and high surface area which are favorable to accumulating soil moisture, to increasing the porosity, to reducing density and bulk density, and to promoting the formation of soil aggregation. All the above soil physical improvement can provide a good environment for the growth of plants. Furthermore, biochar is an ideal acidic soil amendment which can improve the pH of acidic soil. It contains nutrient element which can be directly released into soil, and its surface charge and functional groups are conducive to soil nutrient retention, such as the reduced leaching of NH+4 and NO-3, PO3-4, therefore improve the efficiency of nutrient elements. However, the effect of biochar amendments highly influenced by raw materials and pyrolysis conditions is of inconsistent and sometimes even contrast results can be concluded. In this paper, we summarize the current status and knowledge gaps about the effect of biochar amendments on soil physical and chemical properties and some suggestions are also strengthened. Finally, some possible negative impacts of biochar application and research suggestions are discussed in order to better use of biochar in agriculture.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号