首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2D transition‐metal carbides and nitrides, named MXenes, are promising materials for energy storage, but suffer from aggregation and restacking of the 2D nanosheets, which limits their electrochemical performance. In order to overcome this problem and realize the full potential of MXene nanosheets, a 3D MXene foam with developed porous structure is established via a simple sulfur‐template method, which is freestanding, flexible, and highly conductive, and can be directly used as the electrode in lithium‐ion batteries. The 3D porous architecture of the MXene foam offers massive active sites to enhance the lithium storage capacity. Moreover, its foam structure facilitates electrolyte infiltration for fast Li+ transfer. As a result, this flexible 3D porous MXene foam exhibits significantly enhanced capacity of 455.5 mAh g?1 at 50 mA g?1, excellent rate performance (101 mAh g?1 at 18 A g?1), and superior ultralong‐term cycle stability (220 mAh g?1 at 1 A g?1 after 3500 cycles). This work not only demonstrates the great superiority of the 3D porous MXene foam but also proposes the sulfur‐template method for controllable constructing of the 3D foam from 2D nanosheets at a relatively low temperature.  相似文献   

2.
Fe2O3 is regarded as a promising anode material for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod‐like nanostructured material, consisting of Fe2O3 nanoparticles homogeneously encapsulated in the hollow interior of N‐doped porous carbon nanofibers, as a high‐performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea‐like Fe2O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na‐ions. As a consequence, this peapod‐like structure exhibits a stable discharge capacity of 1434 mAh g?1 (at 100 mA g?1) and 806 mAh g?1 (at 200 mA g?1) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g?1 after 1000 cycles and 396 mAh g?1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g?1. This study provides a promising strategy for developing long‐cycle‐life LIBs and SIBs.  相似文献   

3.
Dual ion batteries (DIBs) have recently attracted ever‐increasing attention owing to the potential advantages of low material cost and good environmental friendliness. However, the potential safety hazards, cost, and environmental concerns mainly resulted from the commonly used nonaqueous organic solvents severely hinder the practical application of DIBs. Herein, a hybrid aqueous/nonaqueous water‐in‐bisalt electrolyte with both broad electrochemical stability window and excellent safety performance is developed. The lithium‐based DIB assembled using KS6 graphite and niobium pentoxide as the active materials in the cathode and anode exhibits good comprehensive performance including capacity, cycling stability, rate performance, and medium discharge voltage. Initial capacities of ≈47.6 and 29.6 mAh g?1 retention after 300 cycles can be delivered with a medium discharge voltage of around 2.2 V in the voltage window of 0–3.2 V at the current density of 200 mA g?1. Good rate performance for the battery can be indicated by 29.7 mAh g?1 discharge capacity retention at 400 mA g?1. It is noteworthy that the coulombic efficiency of the battery can reach as high as 93.9%, which is comparable to that of the corresponding DIBs using nonaqueous organic electrolytes.  相似文献   

4.
As an essential member of 2D materials, MXene (e.g., Ti3C2Tx) is highly preferred for energy storage owing to a high surface‐to‐volume ratio, shortened ion diffusion pathway, superior electronic conductivity, and neglectable volume change, which are beneficial for electrochemical kinetics. However, the low theoretical capacitance and restacking issues of MXene severely limit its practical application in lithium‐ion batteries (LIBs). Herein, a facile and controllable method is developed to engineer 2D nanosheets of negatively charged MXene and positively charged layered double hydroxides derived from ZIF‐67 polyhedrons into 3D hollow frameworks via electrostatic self‐assembling. After thermal annealing, transition metal oxides (TMOs)@MXene (CoO/Co2Mo3O8@MXene) hollow frameworks are obtained and used as anode materials for LIBs. CoO/Co2Mo3O8 nanosheets prevent MXene from aggregation and contribute remarkable lithium storage capacity, while MXene nanosheets provide a 3D conductive network and mechanical robustness to facilitate rapid charge transfer at the interface, and accommodate the volume expansion of the internal CoO/Co2Mo3O8. Such hollow frameworks present a high reversible capacity of 947.4 mAh g?1 at 0.1 A g?1, an impressive rate behavior with 435.8 mAh g?1 retained at 5 A g?1, and good stability over 1200 cycles (545 mAh g?1 at 2 A g?1).  相似文献   

5.
The pursuit of high reversible capacity and long cycle life for rechargeable batteries has gained extensive attention in recent years, and the development of applicable electrode materials is the key point. Herein, thanks to the preintercalation of lithium ions, a stable and highly conductive nanostructure of V2C MXene is successfully fabricated via a facile self‐discharge mechanism, which provides open spaces for rapid ion diffusion and guarantees fast electron transport. Taking the prelithiated V2C as electrode, an outstanding initial coulombic efficiency of 80% and an impressive capacity retention of ≈98% after 5000 charge/discharge cycles are achieved for lithium‐ion batteries. Especially, it demonstrates a fascinating reversible capacity of up to 230.3 mA h g?1 at 0.02 A g?1 and a long cycling life of 82% capacity retention over 480 cycles in the hybrid magnesium/lithium‐ion batteries. In addition, the Mg2+ and Li+ ions cointercalation mechanism of the prelithiated V2C is elucidated through ex situ X‐ray diffraction and X‐ray photoelectron spectroscopy characterizations. This work not only offers an effective approach to compensate the large initial lithium loss of high‐capacity anode materials but also opens up a new and viable avenue to develop promising hybrid Mg/Li‐storage materials with eminent electrochemical performance.  相似文献   

6.
In this work, combining both advantages of potassium‐ion batteries and dual‐ion batteries, a novel potassium‐ion‐based dual‐ion battery (named as K‐DIB) system is developed based on a potassium‐ion electrolyte, using metal foil (Sn, Pb, K, or Na) as anode and expanded graphite as cathode. When using Sn foil as the anode, the K‐DIB presents a high reversible capacity of 66 mAh g?1 at a current density of 50 mA g?1 over the voltage window of 3.0–5.0 V, and exhibits excellent long‐term cycling performance with 93% capacity retention for 300 cycles. Moreover, as the Sn foil simultaneously acts as the anode material and the current collector, dead load and dead volume of the battery can be greatly reduced, thus the energy density of the K‐DIB is further improved. It delivers a high energy density of 155 Wh kg?1 at a power density of 116 W kg?1, which is comparable with commercial lithium‐ion batteries. Thus, with the advantages of environmentally friendly, cost effective, and high energy density, this K‐DIB shows attractive potential for future energy storage application.  相似文献   

7.
To date, the possible depletion of lithium resources has become relevant, giving rise to the interest in Na‐ion batteries (NIBs) as promising alternatives to Li‐ion batteries. While extensive investigations have examined various transition metal oxides and chalcogenides as anode materials for NIBs, few of these have been able to utilize their high specific capacity in sodium‐based systems because of their irreversibility in a charge/discharge process. Here, the mixed Sn–S nanocomposites uniformly distributed on reduced graphene oxide are prepared via a facile hydrothermal synthesis and a unique carbothermal reduction process, producing ultrafine nanoparticle with the size of 2 nm. These nanocomposites are experimentally confirmed to overcome the intrinsic drawbacks of tin sulfides such as large volume change and sluggish diffusion kinetics, demonstrating an outstanding electrochemical performance: an excellent specific capacity of 1230 mAh g?1, and an impressive rate capability (445 mAh g?1 at 5000 mA g?1). The electrochemical behavior of a sequential conversion‐alloying reaction for the anode materials is investigated, revealing both the structural transition and the chemical state in the discharge/charge process. Comprehension of the reaction mechanism for the mixed Sn–S/rGO hybrid nanocomposites makes it a promising electrode material and provides a new approach for the Na‐ion battery anodes.  相似文献   

8.
2D metal‐porphyrin frameworks (MPFs) are attractive for advanced energy storage devices. However, the inferior conductivity and low structural stability of MPFs seriously limit their application as flexible free‐standing electrodes with high performance. Here, for the first time, an interlayer hydrogen‐bonded MXene/MPFs film is proposed to overcome these disadvantages by intercalation of highly conductive MXene nanosheets into MPFs nanosheets via a vacuum‐assisted filtration technology. The alternant insertion of MXene and MPFs affords 3D interconnected “MPFs‐to‐MXene‐to‐MPFs” conductive networks to accelerate the ionic/electronic transport rates. Meanwhile, the interlayer hydrogen bonds (F···H? O and O···H? O) contribute a high chemical stability due to a favorable tolerance to volume change caused by phase separation and structural collapse during the charge/discharge process. The synergistic effect makes MXene/MPFs film deliver a capacitance of 326.1 F g?1 at 0.1 A g?1, 1.64 F cm?2 at 1 mA cm?2, 694.2 F cm?3 at 1 mA cm?3 and a durability of about 30 000 cycles. The flexible symmetric supercapacitor shows an areal capacitance of 408 mF cm?2, areal energy density of 20.4 µW h cm?2, and capacitance retention of 95.9% after 7000 cycles. This work paves an avenue for the further exploration of 2D MOFs in flexible energy storage devices.  相似文献   

9.
The lithium and sodium storage performances of SnS anode often undergo rapid capacity decay and poor rate capability owing to its huge volume fluctuation and structural instability upon the repeated charge/discharge processes. Herein, a novel and versatile method is described for in situ synthesis of ultrathin SnS nanosheets inside and outside hollow mesoporous carbon spheres crosslinked reduced graphene oxide networks. Thus, 3D honeycomb‐like network architecture is formed. Systematic electrochemical studies manifest that this nanocomposite as anode material for lithium‐ion batteries delivers a high charge capacity of 1027 mAh g?1 at 0.2 A g?1 after 100 cycles. Meanwhile, the as‐developed nanocomposite still retains a charge capacity of 524 mAh g?1 at 0.1 A g?1 after 100 cycles for sodium‐ion batteries. In addition, the electrochemical kinetics analysis verifies the basic principles of enhanced rate capacity. The appealing electrochemical performance for both lithium‐ion batteries and sodium‐ion batteries can be mainly related to the porous 3D interconnected architecture, in which the nanoscale SnS nanosheets not only offer decreased ion diffusion pathways and fast Li+/Na+ transport kinetics, but also the 3D interconnected conductive networks constructed from the hollow mesoporous carbon spheres and reduced graphene oxide enhance the conductivity and ensure the structural integrity.  相似文献   

10.
Flexible power sources have shown great promise in next‐generation bendable, implantable, and wearable electronic systems. Here, flexible and binder‐free electrodes of Na3V2(PO4)3/reduced graphene oxide (NVP/rGO) and Sb/rGO nanocomposites for sodium‐ion batteries are reported. The Sb/rGO and NVP/rGO paper electrodes with high flexibility and tailorability can be easily fabricated. Sb and NVP nanoparticles are embedded homogenously in the interconnected framework of rGO nanosheets, which provides structurally stable hosts for Na‐ion intercalation and deintercalation. The NVP/rGO paper‐like cathode delivers a reversible capacity of 113 mAh g?1 at 100 mA g?1 and high capacity retention of ≈96.6% after 120 cycles. The Sb/rGO paper‐like anode gives a highly reversible capacity of 612 mAh g?1 at 100 mA g?1, an excellent rate capacity up to 30 C, and a good cycle performance. Moreover, the sodium‐ion full cell of NVP/rGO//Sb/rGO has been fabricated, delivering a highly reversible capacity of ≈400 mAh g?1 at a current density of 100 mA g?1 after 100 charge/discharge cycles. This work may provide promising electrode candidates for developing next‐generation energy‐storage devices with high capacity and long cycle life.  相似文献   

11.
The further development of high‐power sodium‐ion batteries faces the severe challenge of achieving high‐rate cathode materials. Here, an integrated flexible electrode is constructed by smart combination of a conductive carbon cloth fiber skeleton and N‐doped carbon (NC) shell on Na3V2(PO4)3 (NVP) nanoparticles via a simple impregnation method. In addition to the great electronic conductivity and high flexibility of carbon cloth, the NC shell also promotes ion/electron transport in the electrode. The flexible NVP@NC electrode renders preeminent rate capacities (80.7 mAh g?1 at 50 C for cathode; 48 mAh g?1 at 30 C for anode) and superior cycle performance. A flexible symmetric NVP@NC//NVP@NC full cell is endowed with fairly excellent rate performance as well as good cycle stability. The results demonstrate a powerful polybasic strategy design for fabricating electrodes with optimal performance.  相似文献   

12.
A novel anode material for lithium‐ion batteries derived from aromatic imides with multicarbonyl group conjugated with aromatic core structure is reported, benzophenolne‐3,3′,4,4′‐tetracarboxylimide oligomer (BTO). It could deliver a reversible capacity of 829 mA h g?1 at 42 mA g?1 for 50 cycles with a stable discharge plateaus ranging from 0.05–0.19 V versus Li+/Li. At higher rates of 420 and 840 mA g?1, it can still exhibit excellent cycling stability with a capacity retention of 88% and 72% after 1000 cycles, delivering capacity of 559 and 224 mA h g?1. In addition, a rational prediction of the maximum amount of lithium intercalation is proposed and explored its possible lithium storage mechanism.  相似文献   

13.
A novel composite, MoS2‐coated three‐dimensional graphene network (3DGN), referred to as MoS2/3DGN, is synthesized by a facile CVD method. The 3DGN, composed of interconnected graphene sheets, not only serves as template for the deposition of MoS2, but also provides good electrical contact between the current collector and deposited MoS2. As a proof of concept, the MoS2/3DGN composite, used as an anode material for lithium‐ion batteries, shows excellent electrochemical performance, which exhibits reversible capacities of 877 and 665 mAh g?1 during the 50th cycle at current densities of 100 and 500 mA g?1, respectively, indicating its good cycling performance. Furthermore, the MoS2/3DGN composite also shows excellent high‐current‐density performance, e.g., depicts a 10th‐cycle capacity of 466 mAh g?1 at a high current density of 4 A g?1.  相似文献   

14.
A sulfur‐linked carbonyl‐based poly(2,5‐dihydroxyl‐1,4‐benzoquinonyl sulfide) (PDHBQS) compound is synthesized and used as cathode material for lithium‐ion batteries (LIBs). Flexible binder‐free composite cathode with single‐wall carbon nanotubes (PDHBQS–SWCNTs) is then fabricated through vacuum filtration method with SWCNTs. Electrochemical measurements show that PDHBQS–SWCNTs cathode can deliver a discharge capacity of 182 mA h g−1 (0.9 mA h cm−2) at a current rate of 50 mA g−1 and a potential window of 1.5 V–3.5 V. The cathode delivers a capacity of 75 mA h g−1 (0.47 mA h cm−2) at 5000 mA g−1, which confirms its good rate performance at high current density. PDHBQS–SWCNTs flexible cathode retains 89% of its initial capacity at 250 mA g−1 after 500 charge–discharge cycles. Furthermore, large‐area (28 cm2) flexible batteries based on PDHBQS–SWCNTs cathode and lithium foils anode are also assembled. The flexible battery shows good electrochemical activities with continuous bending, which retains 88% of its initial discharge capacity after 2000 bending cycles. The significant capacity, high rate performance, superior cyclic performance, and good flexibility make this material a promising candidate for a future application of flexible LIBs.  相似文献   

15.
The design of sodium ion batteries is proposed based on the use of flexible membrane composed of ultrasmall transition metal oxides. In this paper, the preparation of CuO quantum dots (≈2 nm) delicately embedded in carbon nanofibers (denoted as 2‐CuO@C) with a thin film via a feasible electrospinning method is reported. The CuO content can be controlled by altering the synthetic conditions and is optimized to 54 wt%. As binder‐free anode for sodium ion batteries, 2‐CuO@C delivers an initial reversible capacity of 528 mA h g?1 at the current density of 100 mA g?1, an exceptional rate capability of 250 mA h g?1 at 5000 mA g?1, and an ultra‐stable capacity of 401 mA h g?1 after 500 cycles at 500 mA g?1. The enhancement of electrochemical performance is attributed to the unique structure of 2‐CuO@C, which offers a variety of advantages: highly conductive carbon matrix suppressing agglomeration of CuO grains, interconnected nanofibers ensuring short transport length for electrons, well‐dispersed CuO quantum dots leading to highly utilization rate, and good mechanical properties resulting in strong electrode integrity.  相似文献   

16.
Hollow inorganic nanostructures have drawn great attention due to their fascinating features, such as large surface area, high loading capacity, and high permeability. The formation, characterization, and application of partially and entirely hollow structure by applying a Si‐based reactive ion deposition and etching method on silicon nanowire as a template are reported. This fabrication technique is extended to a stainless steel substrate to be used as the binder‐free anode for high capacity and high rate lithium‐ion batteries. The electrochemical analyses exhibit that in addition to the high initial discharge capacity of 4125 mAh g?1 at a rate of C/16, the best performing electrode shows discharge/charge capacity of as high as 3302.14/2832.1 mAh g?1, respectively, with an excellent charge capacity retention of 96.7% over 100 cycles at a rate density of 1 C. Even at a rate of 12 C, the as‐designed structure is still able to deliver an impressive 1553 mAh g?1, which probably is attributed to fast lithium diffusion in its hollow part and high porosity of Si and alumina layer. It is proved that the change in hollowness ratio significantly affects capacity retention and average coulombic efficiency of the lithium‐ion cells.  相似文献   

17.
MnO as anode materials has received particular interest owing to its high specific capacity, abundant resources, and low cost. However, serious problems related to the large volume change (>170%) during the lithiation/delithiation processes still results in poor rate capability and fast capacity decay. With homogenous crystals of MnO grown in the network of carbon nanofibers (CNF), binding effect of CNF can effectively weaken the volume change of MnO during cycles. In this work, a CNF/MnO flexible electrode for lithium‐ion batteries is designed and synthesized. The CNF play the roles of conductive channel and elastically astricting MnO particles during lithiation/delithiation. CNF/MnO as binder‐free anode delivers specific capacity of 983.8 mAh g?1 after 100th cycle at a current density of 0.2 A g?1, and 600 mAh g?1 at 1 A g?1 which are much better than those of pure MnO and pure CNF. The ex‐situ morphologies clearly show the relative volume change of MnO/CNF as anode under various discharging and charging times. CNF can elastically buffer the volume change of MnO during charging/discharging cycles. A facile and scalable approach for synthesizing a novel flexible binder‐free anode of CNF/MnO for potential application in highly reversible lithium storage devices is presented.  相似文献   

18.
Potassium‐ion batteries (KIBs) are considered as promising alternatives to lithium‐ion batteries owing to the abundance and affordability of potassium. However, the development of suitable electrode materials that can stably store large‐sized K ions remains a challenge. This study proposes a facile impregnation method for synthesizing ultrafine cobalt–iron bimetallic selenides embedded in hollow mesoporous carbon nanospheres (HMCSs) as superior anodes for KIBs. This involves loading metal precursors into HMCS templates using a repeated “drop and drying” process followed by selenization at various temperatures, facilitating not only the preparation of bimetallic selenide/carbon composites but also controlling their structures. HMCSs serve as structural skeletons, conductive templates, and vehicles to restrain the overgrowth of bimetallic selenide particles during thermal treatment. Various analysis strategies are employed to investigate the charge–discharge mechanism of the new bimetallic selenide anodes. This unique‐structured composite exhibits a high discharge capacity (485 mA h g?1 at 0.1 A g?1 after 200 cycles) and enhanced rate capability (272 mA h g?1 at 2.0 A g?1) as a promising anode material for KIBs. Furthermore, the electrochemical properties of various nanostructures, from hollow to frog egg‐like structures, obtained by adjusting the selenization temperature, are compared.  相似文献   

19.
Potassium‐ion batteries (PIBs) configurated by organic electrodes have been identified as a promising alternative to lithium‐ion batteries. Here, a porous organic Polyimide@Ketjenblack is demonstrated in PIBs as a cathode, which exhibits excellent performance with a large reversible capacity (143 mAh g?1 at 100 mA g?1), high rate capability (125 and 105 mAh g?1 at 1000 and 5000 mA g?1), and long cycling stability (76% capacity retention at 2000 mA g?1 over 1000 cycles). The domination of fast capacitive‐like reaction kinetics is verified, which benefits from the porous structure synthesized using in situ polymerization. Moreover, a renewable and low‐cost full cell is demonstrated with superior rate behavior (106 mAh g?1 at 3200 mA g?1). This work proposes a strategy to design polymer electrodes for high‐performance organic PIBs.  相似文献   

20.
Molybdenum ditelluride nanosheets encapsulated in few‐layer graphene (MoTe2/FLG) are synthesized by a simple heating method using Te and Mo powder and subsequent ball milling with graphite. The as‐prepared MoTe2/FLG nanocomposites as anode materials for lithium‐ion batteries exhibit excellent electrochemical performance with a highly reversible capacity of 596.5 mAh g?1 at 100 mA g?1, a high rate capability (334.5 mAh g?1 at 2 A g?1), and superior cycling stability (capacity retention of 99.5% over 400 cycles at 0.5 A g?1). Ex situ X‐ray diffraction and transmission electron microscopy are used to explore the lithium storage mechanism of MoTe2. Moreover, the electrochemical performance of a MoTe2/FLG//0.35Li2MnO3·0.65LiMn0.5Ni0.5O2 full cell is investigated, which displays a reversible capacity of 499 mAh g?1 (based on the MoTe2/FLG mass) at 100 mA g?1 and a capacity retention of 78% over 50 cycles, suggesting the promising application of MoTe2/FLG for lithium‐ion storage. First‐principles calculations exhibit that the lowest diffusion barrier (0.18 eV) for lithium ions along pathway III in the MoTe2 layered structure is beneficial for improving the Li intercalation/deintercalation property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号