首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic.In the rifting stage,the margin received lacustrine and shallow marine facies sediments.In the post-rifting thermal subsidence,the margin accumulated shallow marine facies and hemipelagic deposits,and the decpwater basins formed.Petroleum systems of deepwater setting have been imaged from seismic data and drill wells.Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea.The deepwater reservoirs are characterized by the deep sea channel fill,mass flow complexes and drowned reef carbonate platform.Profitable capping rocks on the top are mudstoues with huge thickness in the post-rifting stage.Meanwhile,the faults developed during the rifting stage provide a migration path favournble for the formation of reservoirs.The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta,decpwater submarine fan sandstone and reef carbonate reservoirs.  相似文献   

3.
采用古生态学及沉积学方法, 对南海北部深水区BY7-1-1井及L29井特定层段进行细致研究.通过有孔虫、孢粉藻类分析及沉积学分析, 证实南海北部白云深水区在晚始新世即出现滨浅海相沉积环境, 确定了南海北部最早接受海相沉积的时间.始新世海相地层在南海北部主要分布在台西及台西南盆地中, 并在晚始新世扩展到珠江口盆地白云凹陷.在南部分布较广, 曾母盆地、北康盆地、礼乐盆地及巴拉望盆地中均有始新世海相地层分布.南海始新世海相地层的分布受制于新南海扩张及古南海的消退, 以晚始新世为时间节点发生显著变化, 总体上分布范围增大, 反映该时期南海拉张和断裂活动的加剧.南海始新世海相地层具有良好的油气潜力, 在部分盆地中形成了优质的烃源岩与储层, 珠江口盆地白云深水区晚始新世海相地层的发现, 对南海深水海相油气勘探具有积极的参考作用.   相似文献   

4.
The continuous wavelet transform (CWT) analysis reveals the instantaneous variability of the foraminiferal δ18O and δ13C of Site 1143 for the past 5 Ma at the eccentricity, obliquity and precession bands. The cross CWT analysis further demonstrates nonstationary phases of the benthic -δ18O relative to ETP at the three primary Milankovitch bands in the last 5 Ma. The instantaneous phases between benthic -δ18O and δ13C at the precession band display a prominent 128 ka period, probably the cyclicity of the nonstationary climate close to the eccentricity. To explain these nonstationary phases, it is desirable to introduce a nonlinear response model to the global climate system, in which the output has a prominent cycle around 100 ka to match the 128 ka cycle of the instantaneous phase of the δ13C and -δ18O on the precession band.  相似文献   

5.
中国南海莺-琼盆地油气源对比的成熟度证据   总被引:1,自引:0,他引:1  
中国南海莺-琼盆地油气源对比的成熟度证据陈军红,傅家谟,盛国英,周毅(中国科学院广州地球化学研究所,广州510640)张启明(中国海洋石油南海酉部公司石油勘探开发研究院,广东湛江524057)关键词中国南海,莺-琼盆地,成熟度,油气源油气源对比对含油...  相似文献   

6.
To reveal the causes of differences in the hydrocarbon accumulation in continental marginal basins in the centralsouthern South China Sea,we used gravity-magnetic,seismic,drilling,and outcrop data to investigate the tectonic histories of the basins and explore how these tectonic events controlled the hydrocarbon accumulation conditions in these basins.During the subduction of the Cenozoic proto-South China Sea and the expansion of the new South China Sea,the continental margin basins in the central-southern South China Sea could be classified as one of three types of epicontinental basins:southern extensional-foreland basins,western extensional-strike slip basins,and central extensional-drift basins.Because these basins have different tectonic and sedimentary histories,they also differ in their accumulated hydrocarbon resources.During the Cenozoic,the basin groups in the southern South China Sea generally progressed through three stages:faulting and subsidence from the late Eocene to the early Miocene,inversion and uplift in the middle Miocene,and subsidence since the late Miocene.Hydrocarbon source rocks with marine-continental transitional facies dominated byⅡ-Ⅲkerogen largely developed in extremely thick Miocene sedimentary series with the filling characteristics being mainly deep-water deposits in the early stage and shallow water deposits in the late stage.With well-developed sandstone and carbonate reservoirs,this stratum has a strong hydrocarbon generation potential.During the Cenozoic,the basin groups in the western South China Sea also progressed through the three developmental stages discussed previously.Hydrocarbon source rocks with lacustrine facies,marine-continental transitional facies,and terrigenous marine facies dominated byⅡ2-Ⅲkerogen largely developed in the relatively thick stratum with the filling characteristics being mainly lacustrine deposits in the early stage and marine deposits in the late stage.As a reservoir comprised of self-generated and self-stored sandstone,this unit also has a high hydrocarbon generation potential.Throughout those same three developmental stages,the basin groups in the central South China Sea generated hydrocarbon source rocks with terrigenous marine facies dominated byⅢkerogen that have developed in a stratum with medium thicknesses with the filling characteristics being mainly sandstone in the early stage and carbonate in the late stage.This reservoir,which is dominated by lower-generation and upper-storage carbonate rocks,also has a high hydrocarbon generation potential.  相似文献   

7.
中国南方海相石油地质特征及勘探潜力   总被引:14,自引:0,他引:14  
中国南方及邻区的基本构造格架可概括为五个陆缘造山带、三个较稳定地块、一个加里东构造域和一个陆内基底拆离造山带。基本地层层序格架可归纳为六个一级层序及相应的沉积构造旋回,沉积构造格架及多旋回构造演化史决定了南方海相石油地质的基本特征。自震旦纪至中三叠世在南方发育了两个世代的海相原型沉积盆地,均在南北两大陆边缘发育了丰富的优质烃源岩,包括四套区域主力烃源层和六套地区性烃源岩,并形成五套好的区域性盖层以及包括风化壳、裂缝、礁滩及白云岩等多种储集体。印支—早燕山造山期原型大陆边缘盆地和前陆盆地,曾形成五个原始超油气系统,后期的高热演化,使其在现今多转化为含气系统。现实的含气系统只能残留赋存于现今有效保存单元之内,具有多源多期成烃、晚期复合成藏等基本特点。近期油气资源评价认为,南方海相资源量为8.2882×10~(12)m~3气当量,油气勘探潜力大。今后的有利勘探方向包括鄂西渝东地区及川东北地区等七个区块。  相似文献   

8.
Paleogene volcanic rocks crop out in three sedimentary basins, namely, Sanshui, Heyuan and Lienping, in the attenuated continental margin of south China. Lavas from the Sanshui basin which erupted during 64-43 Ma are bimodal, consisting of intraplate tholeiitic basalt and trachyte/rhyolite associations. Similar to Cretaceous A-type granites from the nearby region, the felsic member shows peralkaline nature [Na2O + K2O ≈ 10–12%; (Na + K)/Al≈ 0.98−1.08], general enrichment in the incompatible trace elements and significant depletion in Ba, Sr, Eu, P and Ti. Although both types of the Sanshui lavas have rather uniform Nd isotope compositions [Nd(T) ≈ +6 to +4]that are comparable to Late Cenozoic basalts around the South China Sea, the felsic rocks possess apparently higher initial Sr isotope ratios (ISr up to 0.713) and form a horizontal array to the right in the Nd vs. Sr isotope plot. Closed system differentiation of mantle-derived magmas in a ‘double diffusive’ magma chamber is considered for the bimodal volcanism, in which the trachytes and rhyolites represent A-type melts after extensive crystal fractionation in the upper portion of the chamber. Such A-type melts were later contaminated by small amounts (1–3%) of upper crustal materials during ascent. On the other hand, composition of lavas in the other two basins varies from tholeiitic basalt to andesite. Their Sr and Nd isotope ratios [ISr ≈ 0.705 to 0.711; Nd(T) ≈ +1 to − 5] and generally correlative Nb-Ta depletions suggest a distinct magma chamber process involving fractional crystallization concomitant with assimilation of the country rock. We conclude that these Paleogene volcanic activities resulted from the lithospheric extension in south China that migrated southwards and eventually led to opening of the South China Sea during 30-16 Ma.  相似文献   

9.
受近南北向扩张机制控制,南海陆缘盆地或凹陷多呈NE向带状展布,总体上具有“南三北三”平行排列、外窄内宽的特点。新生代发生的4次重要区域构造运动具有穿时性,共发育3期盆地破裂不整合面,分别是早渐新世与晚渐新世之间、古近纪与新近纪之间、中中新世与晚中新世之间;由东往西,盆地破裂不整合面的时代逐渐变新。受构造运动与海平面升降影响,南海海域发育湖相、海陆过渡相和陆源海相3类烃源岩。由南北两侧向中央海盆,烃源岩类型由湖相逐渐过渡到海陆过渡相与陆源海相;从东向西,盆地主力烃源岩层位逐渐变新,由始新统-渐新统逐渐过渡到渐新统-中新统。南海海域烃源岩的分布规律与盆地破裂不整面存在密切关系:破裂不整合面形成早(早渐新世与晚渐新世之间)的盆地,主力烃源岩形成早(始新统湖相烃源岩);反之,破裂不整合面形成晚(中中新世与晚中新世之间)的盆地,则烃源岩形成晚(渐新统-中新统海陆过渡相到陆源海相烃源岩)。  相似文献   

10.
11.
The South China Sea (SCS) is a region of interaction among three major plates: the Pacific, Indo-Australian and Eurasian. The collision of the Indian subcontinent with the Eurasian plate in the northwest, back-arc spreading at the center, and subduction beneath the Philippine plate along Manila trench in the east and the collision along Palawan trough in the south have produced complex tectonic features within and along the SCS. This investigation examines the satellite-derived gravity anomalies of the SCS and compares them with major tectonic features of the area. A map of Bouguer gravity anomaly is derived in conjunction with available seafloor topography to investigate the crustal structure. The residual isostatic gravity anomaly is calculated assuming that the Cenozoic sedimentary load is isostatically compensated. The features in the gravity anomalies in general correlate remarkably well with the major geological features, including offsets in the seafloor spreading segments, major faults, basins, seamounts and other manifestations of magmatism and volcanism on the seafloor. They also correlate with the presumed location of continental-oceanic crust boundary. The region underlain by oceanic crust in the central part of the SCS is characterized by a large positive Bouguer gravity anomaly (220–330 mgal) as well as large free-air and residual isostatic anomalies. There are, however, important differences among spreading segments. For example, in terms of free-air gravity anomaly, the southwest section of mid-ocean has an approximately 50 km wide belt of gravity low superimposed on a broad high of 45 mgal running NW–SE, whereas there are no similar features in other spreading segments. There are indications that gravity anomalies may represent lateral variation in upper crustal density structure. For instance, free air and isostatic anomalies show large positive anomalies in the east of the Namconson basin, which coincide with areas of dense volcanic material known from seismic surveys. The Red River Fault system are clearly identified in the satellite gravity anomalies, including three major faults, Songchay Fault in the southwest, Songlo Fault in the Northeast and Central Fault in the center of the basin. They are elongated in NW–SE direction between 20±30'N and 17°N and reach to Vietnam Scarp Fault around 16°30'N. It is also defined that the crustal density in the south side of the Central Basin is denser than that in the north side of the Central Basin.  相似文献   

12.
南海中西部地貌单元划分及其特征和成因分析   总被引:1,自引:0,他引:1  
南海中西部处于南海北部和南部的过渡带,夹持于印支地块和南海海底扩张中心之间,其特殊的地貌对于研究整个南海地质地貌有重要意义。本文基于广州海洋地质调查局在南海中西部海洋地质调查项目获取的水深、底质调查及地震剖面数据,结合该海域以往研究成果,提取了有关地貌的信息,编制了南海中西部地貌图。把研究区划分出陆架、陆坡和深海盆地三个二级地貌单元,以及水下岸坡、水下浅滩、海岭、峡谷、麻坑、阶地、盆地、海台、海山、深海扇、深海平原等众多次级地貌单元。文章详细描述了该海域各地貌单元的特征,提出了断层、火山、构造隆起和浊流等地质作用是本区地貌形成的主要因素。  相似文献   

13.
南海南沙海域沉积盆地构造演化与油气成藏规律   总被引:2,自引:0,他引:2  
据钻井、地震剖面、区域地质及磁异常条带分析解释,南沙海域及其邻区的主要沉积盆地的形成演化受裂谷起始不整合面和破裂不整合面分隔,可分为前裂谷期、裂谷期和后裂谷期3个构造阶段。大中型油气藏相关数据的统计表明,南沙海域及邻区大中型油气藏的成藏要素和油气田发育受构造阶段控制。(1)烃源岩发育具有分期、分区特征,礼乐盆地发育前裂谷期、裂谷1幕烃源岩;万安、曾母、西北巴拉望盆地发育裂谷2幕烃源岩,文莱-沙巴盆地发育后裂谷期烃源岩。(2)储层发育具有分期、分带特征,表现为外带老(裂谷2幕)、内带新(后裂谷期)。(3)圈闭类型包括构造、岩性地层圈闭及构造-岩性地层等因素形成的复合圈闭,大致具有内带以地层圈闭为主,外带以构造圈闭为主的特征。(4)大中型油气田分布具有外带砂岩富油气、内带碳酸盐岩富气特点。(5)南沙海域及邻区发育两个后裂谷期主含油气区,即东部巴兰三角洲砂岩背斜油气区和西部卢卡尼亚碳酸盐台地气区。其中,大中型气田的成藏要素组合为裂谷2幕烃源岩、后裂谷期碳酸盐岩储层和地层圈闭;大中型油气田则为后裂谷期烃源岩、砂岩储层和背斜圈闭。  相似文献   

14.
南海及邻域中,新生代盆地类型与油气资源关系探讨   总被引:8,自引:1,他引:8  
杜德莉  曾维军 《地质论评》1998,44(6):580-589
在南海区域地质构造特征及周缘盆地发育特点的基础上,根据盆地分类的理论,试将南海及周缘的35个中、新生代盆地,划分为两型十一类。各主要盆地的油气地质特点表明,不同类型的盆地,其油气远景不同。分析认为,在板内拉张离散环境中所形成的盆地,含油气远景最佳,是目前勘探和开发的重点。  相似文献   

15.
南海北部边缘盆地油气勘探中陆续发现较丰富的二氧化碳(CO2)和氮气(N2)等非烃气气藏,同时亦发现了一些含N2、富N2的天然气层。这些CO2和N2非烃气主要富集于西北部边缘莺歌海盆地中央泥底辟带新近系及第四系浅层中。根据N2地质地球化学特征,可将本区N2划分为大气成因、壳源型有机成因和壳源型有机-无机混合成因三种主要成因类型。结合温压双控热模拟岩石产氮气实验结果,以及N2等非烃气在平面上分区分块、剖面上分带分层的局部性富集特点,追踪判识并确定N2气源主要由来自不同成熟演化阶段的中新统及上新统海相泥岩气源岩的N2与多种物理化学和岩石脱气作用所形成的无机N2相互混合而构成。  相似文献   

16.
The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a  相似文献   

17.
Deepwater oil and gas exploration has become a global hotspot in recent years and the study of the deep waters of marginal seas is an important frontier research area.The South China Sea(SCS)is a typical marginal sea that includes Paleo SCS and New SCS tectonic cycles.The latter includes continental marginal rifting,intercontinental oceanic expansion and oceanic shrinking,which controlled the evolution of basins,and the generation,migration and accumulation of hydrocarbons in the deepwater basins on the continental margin of the northern SCS.In the Paleogene,the basins rifted along the margin of the continent and were filled mainly with sediments in marine-continental transitional environments.In the Neogene–Quaternary,due to thermal subsidence,neritic-abyssal facies sediments from the passive continental margin of the SCS mainly filled the basins.The source rocks include mainly Oligocene coal-bearing deltaic and marine mudstones,which were heated by multiple events with high geothermal temperature and terrestrial heat flow,resulting in the generation of gas and oil.The faults,diapirs and sandstones controlled the migration of hydrocarbons that accumulated principally in a large canyon channel,a continental deepwater fan,and a shelf-margin delta.  相似文献   

18.
The South China Sea is rich in oil and gas resources. With the increasing exploration of oil and gas resources in the northern South China Sea and the increasing demand for energy in the world, The central‐southern South China Sea have become important constituencies for oil and gas resources. The central‐southern basins of South China Sea can be divided into three types of basin groups, namely, the southern basin group (Zengmu Basin, Brunei‐Sabah Basin), the western basin group (Wan'an Basin, Zhong jiannan Basin) and the Central Basin Group (Liyue Basin, Beikang Basin, Nanweixi Basin and Palawan Basin). At present, the degree of exploration is relatively low, and the source rock has not yet formed a understanding of the system. The main source rock development time, source rock characteristics, hydrocarbon generation potential and control factors of each basin group are still unclear, which seriously restricts the exploration of oil and gas. Based on the sedimentary facies distribution and sedimentary filling evolution, combined with the geoche mical characteristics of the source rocks, the source age, organic matter type, hydrocarbon generation potential and main controlling factors of the basins in the central‐southern basins are discussed. By the detailed research on delta scale, provenance system, paleoclimate conditions, ancient vegetation development and hydroca rbon generation parent material, the main controlling factors of hydrocarbon generation potential of source rocks in each basin group are revealed.  相似文献   

19.
中国南海不同板块边缘沉积盆地构造特征   总被引:7,自引:1,他引:7  
基于科学考察区域联测剖面资料,结合南海大地构造背景研究,对南海主要的新生代沉积盆地的构造特征进行了对比分析。研究表明,区域联测剖面穿越的沉积盆地的构造特征具有显著的差异,具体表现在大地构造背景、重磁场特征、盆地基底、断裂性质、构造线方向以及火成岩发育等方面。南海断裂的发育与盆地形成具有密切的关系,南海北部主要表现为NE向张性断裂控制的沉积盆地;西部主要表现为NW向和近SN向走滑断裂控制的沉积盆地;南部比较复杂,张性、压性、剪性断裂都有发育,但以NE向的南沙海槽逆冲断裂及其控制的南沙海槽盆地最具代表性;东部主要指南海中央海盆,断裂和海底火山共同控制了该区上新世-第四纪沉积。  相似文献   

20.
对横跨南海南、北共轭大陆边缘的两条骨干剖面所经过的沉积盆地烃源岩热演化进行模拟,分析了南、北陆缘盆地烃源岩热演化差异。结果表明,南海南部陆缘盆地生烃门限整体比北部陆缘盆地的生烃门限浅,南部陆缘盆地生烃门限整体在2 200~2 300 m之间,中新统烃源岩基本已进入生烃门限;北部陆缘盆地生烃门限整体位于2 500~2 600 m之间,渐新统及其以下烃源岩进入生烃门限。南海南、北陆缘盆地生烃门限的规律性与南海现今热流分布南高北低、西高东低的整体趋势相对应,高热流有利于烃源岩的成熟与生烃,因此热流值高的区域对应生烃门限较浅。造成南、北陆缘主力烃源岩的热演化程度差异的主要原因可能是由南海扩张及古南海俯冲引起的地温场变化所引起。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号