首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   

2.
Geology of the lunar farside crater Necho   总被引:1,自引:0,他引:1  
The lunar farside crater Necho (30 km diameter) displays intricate morphological and structural characteristics. The highland setting provides a complex impact site when compared with the relatively uniform setting of mare craters. Therefore, the effects of pre-impact topography and structure play a dominant role in Necho's formation and modification. Necho's bright ejecta, extensive rays, fresh morphology, and lack of superposed craters indicate that it is extremely young. The asymmetric distribution of ejecta materials may be due to substrate effects, topographic shalowing, or oblique impact.Necho's interior is divided into five physiographic units based on morphologic differences: three floor units (Necho does not display a true flat floor), one hilly central unit, and the wall unit which includes terraces and smooth walls. The interior of the crater also exhibits an unusual asymmetry in the prevalence of terraced units on the western wall. Interior morphology and terrace orientations are probably the result of pre-impact effects. Structural and topographic orientations associated with three large pre-existing degraded craters dominate the impact site.  相似文献   

3.
Gerald G. Schaber 《Icarus》1980,43(3):302-333
A prelimanary geologic map, representing 26.5% of the surface of Io, has been compiled using best-resolution (0.5 to 5 km/line pair) Voyager 1 images and (as a base) a preliminary pictorial map of Io. Nine volcanic units are identified, including materials of mountains (1.9% of total area), plains (49.6%), flows (31.1%), cones (0.1%), and crater vents (4.0%), in addition to seven types of structural features. Photogeologic evidence indicates a dominantly silicate composition for the mountain material, which supports heights of at least 9 ± 1 km. Sulfur flows of diverse viscosity and sulfur-silicate mixtures are thought to compose the pervasive plains. Pit crater and shield crater vent wall scarps reach heights of 2 km and layered plains boundary scarps have estimated heights of 150 to 1700 m; such scarps indicate a material with considerable strenght. A cumulative, volcanic crater size-frequency distribution plot has been prepared using 170 mapped Ionian vents with diameters > 14 km; the shape and slope of the curve are like those for impact craters on other bodies in the solar system, attesting to a similar nonrandom distribution to crater diameters and a surplus of small craters. Io's equatorial zone has six times the number of vents per unit area as the south polar zone. No craters of unequivocal impact origin have been identified on Io to date. A total of 151 lineaments and grabens are recognized with four dominant azimuthal trends forming two nearly orthogonal sets spaces 110° apart (N 85° E, N 25° W and N 45° E, N 55°W). The mapped area lies within the longitudinal zone (250 to 323°) of least-abundant SO2 frost, indicating that other sulfurous components dominate the upper surface layers in this area.  相似文献   

4.
Material is ejected from impact craters in ballastic trajectories; it impacts first near the crater rim and then at progressively greater ranges. Ejecta from craters smaller than approximately 1 km is laid predominantly on top of the surrounding surface. With increasing crater size, however, more and more surrounding surface will be penetrated by secondary cratering action and these preexisting materials will be mixed with primary crater ejecta. Ejecta from large craters and especially basin forming events not only excavate preexisting, local materials, but also are capable of moving large amounts of material away from the crater. Thus mixing and lateral transport give rise to continuous deposits that contain materials from within and outside the primary crater. As a consequence ejecta of basins and large highland craters have eroded and mixed highland materials throughout geologic time and deposited them in depressions inside and between older crater structures.Because lunar mare surfaces contain few large craters, the mare regolith is built up by successive layers of predominantly primary ejecta. In contrast, the lunar highlands are dominated by the effects of large scale craters formed early in lunar history. These effects lead to thick fragmental deposits which are a mixture of primary crater material and local components. These deposits may also properly be named regolith though the term has been traditionally applied only to the relatively thin fine grained surficial deposit on mare and highland terranes generated during the past few billion year. We believe that the surficial highland regolith - generated over long periods of time - rests on massive fragmental units that have been produced during the early lunar history.  相似文献   

5.
Peak-ring basins represent an impact-crater morphology that is transitional between complex craters with central peaks and large multi-ring basins. Therefore, they can provide insight into the scale dependence of the impact process. Here the transition with increasing crater diameter from complex craters to peak-ring basins on Mercury is assessed through a detailed analysis of Eminescu, a geologically recent and well-preserved peak-ring basin. Eminescu has a diameter (∼125 km) close to the minimum for such crater forms and is thus representative of the transition. Impact crater size-frequency distributions and faint rays indicate that Eminescu is Kuiperian in age, geologically younger than most other basins on Mercury. Geologic mapping of basin interior units indicates a distinction between smooth plains and peak-ring units. Our mapping and crater retention ages favor plains formation by impact melt rather than post-impact volcanism, but a volcanic origin for the plains cannot be excluded if the time interval between basin formation and volcanic emplacement was less than the uncertainty in relative ages. The high-albedo peak ring of Eminescu is composed of bright crater-floor deposits (BCFDs, a distinct crustal unit seen elsewhere on Mercury) exposed by the impact. We use our observations to assess predictions of peak-ring formation models. We interpret the characteristics of Eminescu as consistent with basin formation models in which a melt cavity forms during the impact formation of craters at the transition to peak ring morphologies. We suggest that the smooth plains were emplaced via impact melt expulsion from the central melt cavity during uplift of a peak ring composed of BCFD-type material. In this scenario the ringed cluster of peaks resulted from the early development of the melt cavity, which modified the central uplift zone.  相似文献   

6.
By correlating the 1:25,000,000 geologic map of Mars of Scott and Carr (1977) with 4- to 10-km-diameter crater density data from Mariner 9 images, the average crater density for 23 of the equatorial geologic-geomorphic units on Mars was computed. The correlation of these two data sets was accomplished by digitizing both the crater density data and geologic map at the same scale and by comparing them in a computer. This technique assigns the crater density value found in the corresponding location on the geologic data set to a discrete computer file assigned each of the 23 geologic units. By averaging the crater density values accumulated in each file, an “average” crater density for each geologic unit was obtained. Condit believes these average crater density values are accurate indicators of the relative age of the geologic units considered. The statistical validity of these average values is strongest for the geologic units of the largest areal extent. The relative ages as obtained from the average crater density values for the seven largest geologic units, from youngest to oldest, are: Tharsis volcanic material, 21 ± 4 craters/106km2; smooth plains material, 57 ± 14 craters/106km2; rolling plains material, 66 ± 16 craters/106km2; plains materials, 80 ± 17 craters/106km2; ridged plains material, 128 ± 25 craters/106km2; hilly and cratered material, 137 ± 38 craters/106km2; and cratered plateau material, 138 ± 27 craters/106km2.  相似文献   

7.
Radar, infrared, and photogeologic properties of lunar craters have been studied to determine whether there is a systematic difference in blocky craters between the maria and terrae and whether this difference may be due to a deep megaregolith of pulverized material forming the terra surface, as opposed to a layer of semi-coherent basalt flows forming the mare surface. Some 1310 craters from about 4 to 100 km diameter have been catalogued as radar and/or infrared anomalies. In addition, a study of Apollo Orbital Photography confirmed that the radar and infrared anomalies are correlated with blocky rubble around the crater.Analysis of the radar and infrared data indicated systematic terra—mare differences. Fresh terra craters smaller than 12 km were less likely to be infrared and radar anomalies than comparable mare craters: but terra and mare craters larger than 12 km had similar infrared and radar signatures. Also, there are many terra craters which are radar bright but not infrared anomalies.Our interpretation of these data is that while the maria are rock layers (basaltic flow units) where craters eject boulder fields, the terrae are covered by relatively pulverized megaregolith at least 2 km deep, where craters eject less rocky rubble. Blocky rubble, either in the form of actual rocks or partly consolidated blocks, contributes to the radar and infrared signatures of the crater. However, aging by impacts rapidly destroys these effects, possibly through burial by secondary debris or by disintegration of the blocks themselves, especially in terra regions.PSI Contribution No. 110.  相似文献   

8.
Floor-fractured lunar craters   总被引:1,自引:0,他引:1  
Numerous lunar craters (206 examples, mean diameter = 40km) contain pronounced floor rilles (fractures) and evidence for volcanic processes. Seven morphologic classes have been defined according to floor depth and the appearance of the floor, wall, and rim zones. Such craters containing central peaks exhibit peak heights (approximately 1km) comparable to those within well-preserved impact craters but exhibit smaller rim-peak elevation differences (generally 0–1.5km) than those (2.4km) within impact craters. In addition, the morphology, spatial distribution, and floor elevation data reveal a probable genetic association with the maria and suggest that a large number of floor-fractured craters represent pre-mare impact craters whose floors have been lifted tectonically and modified volcanically during the epochs of mare flooding. Floor uplift is envisioned as floating on an intruded sill, and estimates of the buoyed floor thickness are consistent with the inferred depth of brecciation beneath impact craters, a zone interpreted as a trap for the intruding magma. The derived model of crater modification accounts for (1) the large differences in affected crater size and age; (2) the small peak-rim elevation differences; (3) remnant central peaks within mare-flooded craters and ringed plains; (4) ridged and flat-topped rim profiles of heavily modified craters and ringed plains; and (5) the absence of positive gravity anomalies in most floor-fractured craters and some large mare-filled craters. One of the seven morphologic classes, however, displays a significantly smaller mean size, larger distances from the maria, and distinctive morphology relative to the other six classes. The distinctive morphology is attributed, in part, to the relatively small size of the affected crater, but certain members of this class represent a style of volcanism unrelated to the maria - perhaps triggered by the last major basin-forming impacts.  相似文献   

9.
Although we can observe current activity on Saturn's satellite Enceladus with Cassini, insight into past activity is best achieved (for now) through studying the impact crater distributions. Furthermore, approximation of terrain ages can only be attained through calculations using crater densities and estimations of impact rates in the saturnian system. Here we focus on what the impact crater distribution in Enceladus' heavily cratered plains can tell us about Enceladus' geologic history. We use Cassini ISS images to count craters in the heavily cratered plains on Enceladus, along with Rhea, Dione, Tethys and Mimas as references, to develop and compare their size-frequency distributions. Comparisons of our counts show that Enceladus' cratered plains distribution is unique in that it appears to have a relative deficiency of craters for diameters ?2 km and ?6 km compared to the other satellites' heavily cratered plains. Our data also indicates that the impact crater density within the cratered plains changes with latitude. Specifically, both the north and south mid-latitude regions have approximately three times higher density than the equatorial region. We hypothesize that the “missing” small and large craters in Enceladus' cratered plains is due to a combination of viscous relaxation of the larger craters, and burial of the relaxed large craters and small craters by south polar plume and possibly E-ring material. We also conclude that the spatial density distribution is not consistent with recent polar wander.  相似文献   

10.
MESSENGER’s Mercury Dual Imaging System (MDIS) obtained multispectral images for more than 80% of the surface of Mercury during its first two flybys. Those images have confirmed that the surface of Mercury exhibits subtle color variations, some of which can be attributed to compositional differences. In many areas, impact craters are associated with material that is spectrally distinct from the surrounding surface. These deposits can be located on the crater floor, rim, wall, or central peak or in the ejecta deposit, and represent material that originally resided at depth and was subsequently excavated during the cratering process. The resulting craters make it possible to investigate the stratigraphy of Mercury’s upper crust. Studies of laboratory, terrestrial, and lunar craters provide a means to bound the depth of origin of spectrally distinct ejecta and central peak structures. Excavated red material (RM), with comparatively steep (red) spectral slope, and low-reflectance material (LRM) stand out prominently from the surrounding terrain in enhanced-color images because they are spectral end-members in Mercury’s compositional continuum. Newly imaged examples of RM were found to be spectrally similar to the relatively red, high-reflectance plains (HRP), suggesting that they may represent deposits of HRP-like material that were subsequently covered by a thin layer (∼1 km thick) of intermediate plains. In one area, craters with diameters ranging from 30 km to 130 km have excavated and incorporated RM into their rims, suggesting that the underlying RM layer may be several kilometers thick. LRM deposits are useful as stratigraphic markers, due to their unique spectral properties. Some RM and LRM were excavated by pre-Tolstojan basins, indicating a relatively old age (>4.0 Ga) for the original emplacement of these deposits. Detailed examination of several small areas on Mercury reveals the complex nature of the local stratigraphy, including the possible presence of buried volcanic plains, and supports sequential buildup of most of the upper ∼5 km of crust by volcanic flows with compositions spanning the range of material now visible on the surface, distributed heterogeneously across the planet. This emerging picture strongly suggests that the crust of Mercury is characterized by a much more substantial component of early volcanism than represented by the phase of mare emplacement on Earth’s Moon.  相似文献   

11.
Although researchers in the last decade have been primarily concerned with the exotic findings of the more distant planets and moons in our solar system, as given by the Voyager series, there is still much work to be done on our nearer neighbours, including the Moon. This paper summarizes some basic age dating of a portion of the lunar surface, namely the mare in the crater Tsiolkovsky on the lunar far side.Using the Apollo 15 panoramic camera photographs, the cumulative crater frequency (N km-2) relative to crater diameter (D) distribution has been obtained for the mare in the crater Tsiolkovsky. The diameter size range sampled was 0.07 km < D < 1 km. A total of 12 604 craters were counted and their average apparent diameters measured. There were 85 sample areas on the mare surface which were chosen at random, after exclusion of blanketed, volcanic or secondary cratered areas. It was found that a large proportion of the crater floor contains endogenic features, especially volcanic vents at approximately D = 0.3 km. An additional 7 areas of interest were also examined in detail for comparison with areas of purely primary impact craters. Evidence for up to 8 lava floodings can be detected from the size-frequency distributions although no visual data, e.g., flow lobes, can be seen on the mare surface.The total size-frequency distribution for all the areas is coincident with Neukum et al. (1975a and b) Calibration Distribution in the size range 0.25 km < D < 1 km which is at the smallest crater diameters that they obtained. Neukum et al. (1975a and b) give their distribution as a polynomial of 7th degree. However, in this present study a variation is indicated in the steepening of the curve for D < 0.1 km.The results also approximate (but only for D < 0.6 km) the distribution obtained by Shoemaker et al. (1970) in the range 100 m < D < 3 km where N ~ D -2.9. The best fit line reached for the data given here is N ~ D -2.682.Comparison of the distribution with plots for the maria at Apollo 11, 12, and 15 landing sites show that Tsiolkovsky mare is 3.51 ± 0.1 × 109 yr old. This agrees with other workers (see Gornitz, 1973) who place it between Mare Tranquillitatis (Apollo 11 radiometric dating: 3.5 to 3.9 aeons) and Oceanus Procellarum (Apollo 12: 3.5 to 3.4 aeons). There are no rock samples from Tsiolkovsky to given an absolute age.This places Tsiolkovsky mare within the weighted mean of the age range (1.0 to 4.3 × 109 yr old) of the maria on the Moon. From this it can be concluded that the processes producing the vast basalt outpourings seen on the Moon's face apply for the far side also and that there is a linking factor for the whole Moon.  相似文献   

12.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   

13.
An analysis has been made of the tendency of large lunar craters to lie along circles. A catalog of the craters ? 50 km in diameter was prepared first, noting position, diameter, rim sharpness and completion, nature of underlying surface, and geological age. The subset of those craters 50–400 km in diameter was then used as input to computer programs which identified each ‘family’ of four or more craters, of selected geological age, lying on a circular arc. For comparison, families were also identified for randomized crater models in which the crater spatial density was matched to that on the Moon, either overall or, separately, for mare and highland areas. The observed frequency of lunar arcuate families was statistically highly significantly greater than for the randomized models, for craters classified as either late pre-Imbrian (Nectarian), middle pre-Imbrian, or early pre-Imbrian, as well as for a number of larger age-classes. The lunar families tend to center in specific areas of the Moon: these lie in highlands rather than maria and are different for families of Nectarian craters than for pre-Nectarian. The origin of the arcuate crater groupings is not understood.  相似文献   

14.
A classification of over 200 lunar mare domes shows that they have two major modes of occurrence: (1) low, flat, generally circular structures with convex shapes, slopes less than about 5°, and displaying summit craters, and (2) irregular structures often adjacent to highland regions and rarely containing summit craters. On the basis of morphologic and morphometric similarities, the first mode of occurrence appears to be analogous to small terrestrial shield volcanoes, and to represent primary volcanic constructs, while the second class of domes appears to result from secondary volcanic effects (flooding of highland material to produce kipukas and draping of lavas to produce irregular dome-like topography).Domes comparable to small shield volcanoes generally range from 3–17 km in diameter and up to several hundred meters in height and occur predominantly in groupings in the lunar equatorial region in northeast Tranquillitatis (Cauchy area), between Kepler and Copernicus (Hortensius area), and in the Marius Hills. In the Marius Hills, domes generally lack summit craters and have a rough surface texture formed in part by superposed cones and steep-sided flows. Elsewhere, domes representing volcanic sources are smooth-surfaced and usually contain a summit crater. These features are similar in general morphology to small terrestrial lava shields. They are generally intermediate in volume, slope, and height between small shields of terrestrial basaltic plains (such as the Snake River Plains) and larger Icelandic shields. Summit craters on lunar domes are considerably larger than craters on terrestrial shields of comparable diameters, apparently due to a combination of factors, including vent enlargement during extrusion, possibly higher lunar extrusion rates, different amounts of collapse, and impact erosion.Most vent-related domes appear to be associated with, and are thus approximately the same age as, surrounding lava plains, although relationships in specific areas have not yet been established. On the basis of age ranges of mare deposits established by Apollo samples, mare vent-related domes formed over an approximately one billion year period starting about 3.7 b.y. ago. Extrusion rates were apparently relatively low compared to the very high values characteristic of flows associated with major lunar sinuous rilles and terrestrial flood basalts, but may have been relatively high compared to similar terrestrial shields. Large shield volcanoes equivalent to the terrestrial Hawaiian-type or to the martian edifices such as Olympus Mons, do not occur on the Moon. Lack of these features may be due to the low viscosities and high effusion rates typical of many lunar eruptions and the lack of continuous eruptions from single sources.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

15.
Before the Apollo 16 mission, the material of the Cayley Formation (a lunar smooth plains) was theorized to be of volcanic origin. Because Apollo 16 did not verify such interpretations, various theories have been published that consider the material to be ejecta of distant multiringed basins. Results presented in this paper indicate that the material cannot be solely basin ejecta. If smoothplains are a result of formation of these basins or other distant large craters, then the plains materials are mainly ejecta of secondary craters of these basins or craters with only minor contributions of primary-crater or basin ejecta. This hypothesis is based on synthesis of knowledge of the mechanics of ejection of material from impact craters, photogeologic evidence, remote measurements of surface chemistry, and petrology of lunar samples. Observations, simulations, and calculations presented in this paper show that ejecta thrown beyond the continuous deposits of large lunar craters produce secondary-impact craters that excavate and deposit masses of local material equal to multiples of that of the primary crater ejecta deposited at the same place. Therefore, the main influence of a large cratering event on terrain at great distances from such a crater is one of deposition of more material by secondary craters, rather than deposition of ejecta from the large crater. Examples of numerous secondary craters observed in and around the Cayley Formation and other smooth plains are presented. Evidence is given for significant lateral transport of highland debris by ejection from secondary craters and by landslides triggered by secondary impact. Primary-crater ejecta can be a significant fraction of a deposit emplaced by an impact crater only if the primary crater is nearby. Other proposed mechanisms for emplacement of smooth-plains formations are discussed, and implications regarding the origin of material in the continuous aprons surrounding large lunar craters is considered. It is emphasized that the importance of secondary-impact cratering in the highlands has in general been underestimated and that this process must have been important in the evolution of the lunar surface.  相似文献   

16.
The first part of the paper describes the relationship between the erosional stage of craters and the crater areal density. It is shown that class-2 and -3 craters are progressively more abundant as the crater areal density increases, while craters of class 4 and 5 are more abundant with decreasing crater areal densities. A geological model is proposed, in which the class of a newly foormed crater is 1. As time progresses, erosional agents will increase the class of the crater to class 2, then 3, and, in some cases, to 4. The length of time between classification steps is not known in terms of years, but is equivalent to the time necessary for the crater density to increase by 2 to 8 craters per unit area for creaters larger than 10 km, and by 10 to 20 for craters larger than 3.5 km. Craters of class 5 and some of class 4 are not formed by the same erosional agents, but are catastrophic, caused either by a mare-producing impact or by flooding of mare material.The second part of the paper presents a method for relatively dating large lunar areas. The method uses the model previously developed. A relative time sequence is constructed using the density of craters of classes 1, 2, and 3 and the percentage of these which is of class 1. As an example, 18 large areas are defined on the lunar near side and are put in temporal order. Mare Serenitatis appears to have the youngest terrain, and an area southwest of the Rupes Altai appears to have the oldest.In the final part of the paper a geological model is developed in order to explain age differences in the terrae. The model calls for rejuvenation of lunar terrains, caused by the seismic waves and ballistic sedimentation resulting from large impacts. The area surrounding Mare Orientale is cited as an example of a terrain so affected. A similar effect on the terrae of the near side could explain the apparent age relationships measured.  相似文献   

17.
Michael Gurnis 《Icarus》1981,48(1):62-75
Improved crater statistics from varied Martian terrains are compared to lunar crater populations. The distribution functions for the average Martian cratered terrain and the average lunar highlands over the diameter range 8–2000 km are quite similar. The Martian population is less dense by approximately 0.70 from 8 to 256 km diameter and diverges to proportionally lower densities at greater diameters. Crater densities on Martian “pure” terra give a lower limit to the Mars/Moon integrated crater flux of 0.75 since the last stabilization of the respective planetary crusts. The crater population >8 km diameter postdating the Martian northern plains is statistically indistinguishable from that population postdating the lunar maria. Monte Carlo simulations were performed to constrain plausible mechanisms of crater obliteration. The models demonstrate that if the crater density difference between the lunar and Martian terra has been due to resurfacing processes, random intercrater plains formation cannot be the sole process. If plains preferentially form in and obliterate larger craters, then the observed Martian distribution retains its “shape” as the crater density decreases. This result is consistent with the morphology of Martian intercrater plains.  相似文献   

18.
Abstract— We used Mars Orbiter Laser Altimeter (MOLA), Thermal Emission Imaging System visible light (THEMIS VIS), and Mars Orbiter Camera (MOC) data to identify and characterize the morphology and geometry of the distal ramparts surrounding Martian craters. Such information is valuable for investigating the ejecta emplacement process, as well as searching for spatial variations in ejecta characteristics that may be due to target material properties and/or latitude, altitude, or temporal variations in the climate. We find no systematic trend in rampart height that would indicate regional variations in target properties for 54 ramparts at 37 different craters 5.7–35.9 km in diameter between 52.3°S to 47.6°N. Rampart heights for multi‐lobe and single‐lobe ejecta are each normally distributed with a common standard deviation, but statistically distinct mean values. Ramparts range in height from 20–180 m, are not symmetric, are typically steeper on their distal sides, and may be as much as ?4 km wide. The ejecta blanket proximal to parent crater from the rampart may be very thin (<5 m). A detailed analysis of two craters, Toconao crater (21°S, 285°E) (28 measurements), and an unnamed crater within Chryse Planitia (28.4°N, 319.6°E) (20 measurements), reveals that ejecta runout distance increases with an increase in height between the crater rim and the rampart, but that rampart height is not correlated with ejecta runout distance or the thickness of the ejecta blanket.  相似文献   

19.
Improved measurements of the target elevations of 885 impact craters on Venus indicate that they are nearly random with respect to elevation. Although a slight deficit of craters at high elevations and an excess at low elevations is observed, the differences are marginally significant. Using a high-resolution digital map and database of all major volcanic, tectonic and impact features, we examine the distribution of impacts within volcanic and tectonic features, and the distribution of volcanism and tectonism with elevation. We show that the observed crater hypsometry results from resurfacing at higher elevations by volcanic and tectonic features superimposed on less active plains.The distribution of impacts in the map units has two distinct patterns: (1) the plains and shield fields (70%) have high crater densities and low proportions of tectonized or embayed craters; and (2) the remaining volcanic and tectonic features (30%) have low crater densities and high proportions of modified craters. The plains and shield fields appear to represent a much lower level of resurfacing activity. Simple area-balance calculations indicate that resurfacing at higher elevations by tectonic and volcanic features plausibly explains the observed crater hypsometry. However, the subtlety of the effects suggests that either (1) little resurfacing has occurred during the period of crater accumulation, or (2) resurfacing acts almost equally at all elevations. The apparent low activity of the plains and their abundance at lower elevations makes it unlikely that resurfacing is balanced with respect to elevation. It appears that the plains have been mostly quiescent since their emplacement, and that subsequent resurfacing occurs mostly in the highlands as a result of volcanism, corona formation, and rifting. We estimate that since the end of plains emplacement about 14% of Venus has been resurfaced by volcanism and about 6% by tectonic deformation.  相似文献   

20.
The lunar Orientale basin and its associated facies formed as a result of impact into lunar highland crustal rocks. The crater rim is shown to be closely represented by the position of the outer Rook Mountain ring, approximately 620 km in diam. The inner Rook Mountains form a central peak ring within the crater. The 900 km diam Cordillera ring is a fault scarp which formed in the terminal stages of the cratering event as a large portion of the crust collapsed inward toward the recently excavated crater, forming a mega-terrace. This collapse pushed the wall of the Orientale crater inward, distorting it and slightly decreasing its radius.A domical facies is almost exclusively developed between the Cordillera and outer Rook rings. The domical facies is interpreted to be radially textured ejecta which was disrupted and modified to a jumbled domical texture by seismic shaking associated with the formation of the mega-terrace. The plains and corrugated facies pre-date the mare fill and lie within the Orientale crater. These facies are interpreted to have been deposited contemporaneously with the cratering event as partial and total impact melts which collected on the floor of the crater during the terminal stages of the event. The plains facies, with an estimated thickness of 1 km and a volume of 75000 km3, represent the most thoroughly impact melted materials which collected and ponded in the central portion of the crater floor. The corrugated facies, with an estimated thickness of 1 km and a volume of 180000 km3, represent impact partial melts mixed with debris. A relatively small volume of mare material was subsequently deposited in the basin (probably less than 25000 km3 in Mare Orientale).There is little evidence that the basin has undergone major structural modifications subsequent to the terminal stages of the cratering event. The striking implication for the Orientale gravity anomaly is that mascon formation may be primarily related to crustal excavation and upwarping of a moho plug, rather than attributable to post-impact mare filling.The plains units on the floor of Orientale are similar to Cayley-like plains in other multi-ringed basins and on smaller crater floors. Impact melt deposits may therefore be a significant source of Cayley-like plains units.The volumes of impact melt associated with the Orientale basin and their mode of deposition have important implications for petrogenetic models. Multi-ringed basin formation provides a mechanism for instantaneously melting large volumes of shallow to intermediate depth lunar crustal material which is emplaced such that the differentiation and crystallization of a variety of igneous rock types and textures may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号