首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
SEBS增容等规聚丙烯/间规聚苯乙烯共混体系的结构与性能   总被引:1,自引:0,他引:1  
用3种组成相近而分子量不同的苯乙烯-乙烯/丁烯-苯乙烯共聚物(SEBS)作为增容剂,对等规聚丙烯/间规聚苯乙烯(iPP/sPS)共混物进行增容。研究了共聚物的分子量对iPP/sPS共混物的形态结构及力学性能的影响。结果表明,中、低分子量的SEBS具有较好的增容作用,能有效提高共混物的拉伸强度;而高分子量的SEBS则能显著改善共混物的韧性。用SEM观察了增容剂在共混物中的分布情况,揭示了共混物的力学性能不仅取决于增容剂的界面活性,而且还与增容剂在共混物中的分布密切相关。  相似文献   

2.
采用一系列不同甲基丙烯酸环氧丙酯(GMA)含量的苯乙烯-甲基丙烯酸环氧丙酯共聚物(SG)增容尼龙6(PA6)/间规聚苯乙烯(sPS)(80/20)共混物,通过扫描电镜及拉伸实验考察了SG共聚物中GMA的含量对共混物形态结构及力学性能的影响。形态观察显示,SG共聚物可以有效地降低PA6/sPS共混物中分散相的尺寸,增加两相界面间的粘接力;SG共聚物中GMA的含量对其增容效果有较大影响,质量分数为5%左右时,SG共聚物对PA6/sPS共混物的增容效果最佳。拉伸实验结果表明,PA6/sPS共混物的拉伸强度及模量随着SG共聚物的加入而增加,但其断裂伸长率在较高SG含量时则有所下降。  相似文献   

3.
熔融挤出HDPE/EVOH共混物的微观结构及性能   总被引:1,自引:0,他引:1  
采用高密度聚乙烯(HDPE)接枝马来酸酐(MAH)或甲基丙烯酸缩水甘油酯(GMA)作为增容剂,熔融挤出制备HDPE/乙烯-乙烯醇共聚物(EVOH)共混物.通过扫描电镜观察、气体渗透试验以及力学性能试验,分析增容剂对共混物相容性的影响,并研究共混物的力学性能和阻隔性.结果表明:增容剂能显著提高共混物的相容性.与HDPE相...  相似文献   

4.
研究了不同配比的聚苯乙烯/聚碳酸酯(PS/PC)共混体系的结构与力学性能及彼此之间的关系,讨论了增容剂氢化苯乙烯-丁二烯共聚物接枝马来酸酐(SEBS-g-MAH)对共混物相容性及力学性能的影响。差示扫描量热分析表明,PS/PC表现出2个玻璃化转变温度(Tg),而PS/PC/SEBS-g-MAH则只有1个Tg。扫描电镜的分析结果表明,PS为连续相,PC为分散相,而且SEBS-g-MAH的加入使PS与PC的界面变得模糊。可见增容剂对共混体系具有明显的增容作用。共混物的冲击强度在PC用量大于30 phr时明显提高,拉伸强度和冲击强度在低PC含量时较纯PS有一定程度的下降,但随PC含量增加又逐渐提高;增容共混物的力学性能比未增容的有较大提高;当PC用量约40 phr时共混物具有最好的综合性能。  相似文献   

5.
将聚乳酸(PLA)与聚对苯二甲酸/己二酸/丁二酯(PBAT)以60/40的质量比熔融共混挤出,并添加反应型增容剂IGETABOND以增强2种聚合物间的界面结合能力。使用差示扫描量热仪(DSC)、热重分析(TGA)、拉伸和冲击测试及扫描电镜(SEM),分析了添加增容剂共混物的力学性能、热性能及相形态。结果表明,共混物的断裂伸长率和冲击强度均随增容剂含量增加而增加,均在添加9phr时达到最大值,分别约为未添加时的2倍和3倍;添加增容剂后,虽然共混物仍有2个玻璃化转变温度(Tg),但两者的Tg略微呈现出相互接近的趋势;同时扫描电镜照片显示,未添加增容剂时,两相间的界面层清晰可见,但随着增容剂的添加量增至7phr时,两相的界面层几乎完全融合。  相似文献   

6.
PLA-g-MAH增容改性PLA/PETG共混物的结构与性能   总被引:1,自引:0,他引:1  
采用熔融法制备聚乳酸接枝马来酸酐(PLA-g-MAH)用于增容改性聚乳酸/聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PLA/PETG)共混物,通过傅里叶转换红外光谱(FT-IR)、扫描电子显微镜(SEM)和力学性能测试,考察了共混物的结构和力学性能。SEM结果显示,加入增容剂PLA-g-MAH后,PLA/PETG共混物两相间的界面明显变得模糊,说明PLA-g-MAH对共混物具有一定的增容作用;增容剂的引入,使共混物的拉伸强度和弯曲模量略有下降,但冲击强度略有提高,断裂伸长率显著提高(PLA的为6.9%,而加入3%增容剂共混物的为21.9%,提高到纯样的3倍左右),表现出良好的性能。  相似文献   

7.
PLA/PBAT/PLA-g-MAH可生物降解复合材料的形态结构与性能分析   总被引:1,自引:1,他引:0  
通过熔融共混法制备马来酸酐接枝聚乳酸(PLA-g-MAH)用于改善聚乳酸/聚己二酸-对苯二甲酸丁二酯共混物(PLA/PBAT)的相容性,并对复合材料的形态结构、力学性能和生物降解性能进行研究。SEM结果显示,添加增容剂PLA-g-MAH后,PLA/PBAT共混物两相间的界面明显变得模糊,说明PLA-g-MAH对共混物有一定的增容作用;增容剂PLA-g-MAH的加入,使复合材料的拉伸强度和弯曲强度相比于纯PLA略有下降,但其冲击强度有一定程度的提高,断裂伸长率有显著提高,比纯PLA的断裂伸长率提高了约17倍,表现出良好的力学性能;另外,PLA-g-MAH的加入提高了共混物的生物降解性能。  相似文献   

8.
采用熔融接枝共混法制备了马来酸酐(MAH)接枝共聚PP(ICPP)制备增容剂ICPP-g-MAH和PC/ICPP/ICPP-g-MAH共混物,研究了ICPP-g-MAH增容PC/ICPP合金的力学性能、吸水性和加工流变性能等.结果表明,与未增容的体系相比,ICPP-g-MAH是PC/ICPP舍金的有效增容剂,在80%PC的共混体系中,加入少量的ICPP-g-MAH的确起到改善相界面,提高合金力学性能的作用.当ICPP-g-MAH质量分数为5%,EBS质量分数为0.2%时,合金拉伸强度和冲击强度最好,维卡软化温度达到最大;加入ICPP-g-MAH后,PC/ICPP/ICPP-g-MAH共混物吸水率下降,熔体流动速率(MFR)先减小后增大.  相似文献   

9.
通过熔融共混制备了不同质量比的高密度聚乙烯(HDPE)/乙烯-醋酸乙烯酯(EVA)共混物,采用旋转流变仪、扫描电镜及电子万能试验机等研究了共混物的动态流变行为、相形态及力学性能。结果表明,HDPE/EVA为不相容共混物,HDPE质量分数较高的共混物界面相互作用高于EVA质量分数较高的共混物,这就导致了HDPE质量分数较高的共混物中分散相尺寸更小。在50/50共混物中发现了明显的共连续相结构。HDPE与EVA共混后降低了HDPE相的熔点,提高了EVA相的熔点,这归因于EVA相对HDPE相的稀释作用以及HDPE相对EVA相的成核作用。当HDPE质量分数较高时,共混物的拉伸强度呈现出正偏差,而对于50/50的共混物以及EVA质量分数较高的共混物则显示出负偏差。断裂伸长率与拉伸强度的变化趋势相同,除了80/20共混物有所例外,这可能是由于该组成下共晶度较高所致。  相似文献   

10.
增容剂对PVC/PA6共混物性能的影响   总被引:2,自引:0,他引:2  
分别以乙烯醋酸乙烯酯接枝马来酸酐(EVA-g-MAH)、丙烯晴-丁二烯-苯乙烯三元共聚物接枝马来酸酐(ABS-g-MAH)及聚乙烯接枝马来酸酐(PE-g-MAH)三种聚合物为增容剂制备了聚氯乙烯/聚酰胺6(PVC/PA6)共混物,采用扫描电子显微镜(SEM)、动态力学分析(DMA)及力学性能测试研究了相容剂对PVC/PA6(80/20)的相形态结构及力学性能的影响。结果表明,三种相容剂对PVC/PA6都具有明显的增容作用,但5%EVA-g-MAH增容PVC/PA6(80/20)的分散相尺寸最小最均匀;三种增容剂增容的PVC/PA6共混物都只有一个玻璃化转变温度(Tg),但EVA-g-MAH增容共混物的Tg略向高温偏移;力学性能测试结果显示,5%的EVA-g-MAH增容的PVC/PA6共混物的缺口冲击强度和拉伸强度分别提高了18%和200%,达到了3.8kJ/m2和46MPa。  相似文献   

11.
考察了高界面压应力对不相容聚对苯二甲酸乙二醇酯(PET)/聚乙烯(PE)和聚碳酸酯(PC)/PE共混物拉伸性能的影响.高界面压应力是共混物低温成型(PE的成型温度)时,分散相与基体从加工温度冷却到室温过程中基体的收缩比分散相粒子大产生的.尽管PET/PE和PC/PE共混物极不相容,但拉伸强度和模量随着PET和PC含量增加而增加.PET与PC含量相同时,PC/PE的拉伸强度和模量高于PET/PE的.采用Takayanangi方程计算共混物的拉伸模量时,具有高界面压应力的PC/PE共混物的拉伸强度高于界面有良好粘结的共混物的理论值,表明在不添加增容剂时,可通过控制加工条件改善共混物界面相互作用,提高共混材料的性能.  相似文献   

12.
以过氧化苯甲酰(BPO)为引发剂,甲基丙烯酸缩水甘油酯(GMA)为反应单体,通过熔融接枝反应将GMA接枝到聚己内酯(PCL)上,制备了PCL-g-GMA。以PCL-g-GMA为增容剂,制备了PCL/淀粉/PCL-g-GMA共混物。扫描电镜表明,PCL/淀粉共混物界面粘接力差、淀粉出现团聚。然而加入PCL-g-GMA后,PCL/淀粉/PCL-g-GMA中淀粉分散变得均匀,且淀粉颗粒被PCL包裹,两相界面更加模糊。拉伸实验表明,加入PCL-g-GMA增容剂后,共混物的拉伸强度由(12.3±2.1)MPa增加到(17.0±3.2)MPa,拉伸模量由(4.2±1.8)GPa增加到(5.7±2.9)GPa.断裂伸长率由(210±16)%增加到(803±40)%。  相似文献   

13.
研究了紫外辐照对高密度聚乙烯(HDPE)结构与性能以及HDPE/聚乙烯醇(PVA)短纤维共混体系力学性能的影响。结果表明,在空气中通过紫外辐照可在HDPE分子链上引入C=0、C-0含氧基因,使HDPE分子量下降、熔点降低、结晶度增大并产生凝胶。以辐照HDPE为增容剂,增强了HDPE与PVA相界面的相互作用,共混物的拉伸屈服强度和缺口冲击强度得到提高。  相似文献   

14.
采用动态流变测试和扫描电子显微镜技术,考察高抗冲聚苯乙烯(HIPS)/高密度聚乙烯(HDPE)共混物的动态黏弹行为与相形态,对比1%(质量分数,下同)的纳米和微米CaCO_3对HIPS/HDPE(30/70)不相容共混物的增容效果。结果表明:当HDPE小于30%时,HIPS/HDPE共混物在低频区的复数黏度和储存模量均显示出明显的正偏差,而当HDPE大于30%时,则呈现负偏差;前者与HDPE和PB粒子间的相互作用相关,而后者归因于HDPE基体与PS分散相之间较弱的界面相互作用。当HIPS为基体时,HDPE分散相粒子呈现较宽的尺寸分布;而当HDPE为基体时,PS分散相呈现双模尺寸分布,对应于两种不同类型的PS分散相粒子的存在。1%的纳米CaCO_3对HIPS/HDPE(30/70)不相容共混体系起到了一定的增容效果,CaCO_3纳米粒子主要位于HIPS/HDPE相界面以及HDPE连续相内;而微米CaCO_3对该共混体系仅起到了增黏而非增容作用,CaCO_3微米粒子仅位于HDPE连续相内。  相似文献   

15.
EPDM/PS交替多层复合材料的力学性能分析   总被引:1,自引:0,他引:1  
用自行设计的微纳多层共挤出体系制备了三元乙丙橡胶/聚苯乙烯(EPDM/PS)交替多层复合材料。偏光显微镜和扫描电镜分析表明, 所制备的复合材料具有规则层状交替结构。与同组分的一般共混样品相比, 64层EPDM/PS交替复合材料表现出不同的拉伸断裂行为: 初期的PS断裂行为和后期的EPDM拉伸行为。EPDM和PS层保持了较好的连续性, 且EPDM层阻止了PS层裂纹向相邻PS层的发展, 使64层样品与同组分的一般共混样品相比具有较高的拉伸强度和杨氏模量。讨论了在PS相中加入相容剂苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)对64层EPDM/PS交替复合材料力学性能的影响, 发现SEBS的加入提高了PS相的韧性, 并且改善了EPDM层与PS层界面的相互作用。   相似文献   

16.
乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯(PTW)是一种含有缩水甘油酯型环氧的三元共聚物。以PTW为增容剂,采用双螺杆挤出机熔融制备出R-PET/PC/PTW共混材料。通过力学性能测试、黏度测试、红外光谱分析、冲击断面扫描电镜分析等,研究了PTW含量的变化对共混材料结构和性能的影响。研究表明,随着PTW含量的不断增多,RPET/PC/PTW共混材料冲击断面中两相相界面越来越模糊,相容性明显改善;共混材料特性黏度不断提高,熔体流动速率(MFR)逐渐变小;当PTW含量在10%时,黏度达到0.6328dL/g,共混材料的综合力学性能最佳,缺口冲击强度达到11.74kJ/m2,比不加PTW的R-PET/PC共混物的冲击强度2.41kJ/m2提高近4倍。共混材料弯曲强度有所提高,拉伸强度有少许的下降,但断裂伸长率大幅提高,说明PTW对R-PET/PC共混材料是一种很好的增韧增容剂。  相似文献   

17.
LCP微球对LCP/尼龙6共混体系力学性能的影响   总被引:2,自引:0,他引:2  
制备了分散相呈球状微粒形貌的液晶聚合物/尼龙6 (LCP/PA6)共混体系,选用离聚物磺化聚苯乙烯锌盐(Zn-SPS)和反应性嵌段共聚物苯乙烯-马来酸酐共聚物(SMA)作为体系的增容剂,探讨了在相间相互作用得以改善时,利用LCP微球改善 LCP/尼龙6 共混体系韧性的可能性。试样受拉后的形貌观察表明,在增容体系中,LCP微球很好地镶嵌在尼龙6基体中,粒子脱落的空洞发生了较大的形变。力学性能测试结果表明,LCP的加入使材料的拉伸强度低于纯尼龙6,加入增容剂后共混材料拉伸强度有所提高,其中LCP/PA6 (质量比10/90)共混体系增容后的拉伸强度与纯尼龙6 相当。所研究的增容体系的拉伸断裂吸收能均比未增容体系有所增加。其中,当 LCP的质量分数为4%时,Zn-SPS增容体系的拉伸断裂吸收能比未增容体系和纯尼龙6分别增加了12%和62%;当LCP的质量分数为10 %时,SMA增容体系的拉伸断裂吸收能比未增容体系和纯尼龙6分别增加了46%和55%。表明在适当条件下,利用LCP微球可以在保持共混体系的拉伸强度的同时提高材料的韧性。  相似文献   

18.
聚丙烯接枝物反应挤出增容PP/PA6共混物的形态结构   总被引:16,自引:0,他引:16  
采有PP熔融接枝MAH和不饱和羧酸混合单体通过反应挤出增容PP/PA6共混物,研究了增容共混物的形态结构。SEM、TEM观察表明,接枝物能明显降低共混物的分散相尺寸,改善体系的分散状况,提高共混物两相的相容性;增容共混物的两相界面结合改善,相界面变得模糊。WAXD、DSC测试表明,用该接枝物增容后的共混物,组分的Xc下降,分散相微晶尺才减小。研究结果表明该接枝物是PP/PA6共混体系的有效增容剂。  相似文献   

19.
采用熔融共混法制备出了废旧聚丙烯/废旧高抗冲聚苯乙烯(R-PP/R-HIPS)共混物,研究了增容剂苯乙烯-乙烯/丙烯二嵌段共聚物(SEP)对R-PP/RHIPS共混物力学性能、微观形貌、熔融指数(MFI)和平衡扭矩的影响。结果表明,当SEP含量为10 phr时,共混物的缺口冲击强度为5.28 k J/m~2,相比未添加SEP的共混物提高了114.63%,拉伸强度略有下降。扫描电镜(SEM)研究表明,SEP的加入提高了分散相分散的均匀程度,细化了分散相粒子的尺寸,对共混物的增容效果明显。MFI的降低和平衡扭矩的增大表明SEP的加入提高了共混物的粘度。  相似文献   

20.
马来酸酐接枝SEBS对尼龙6/SEBS共混物聚集态结构的影响   总被引:4,自引:0,他引:4  
研究了马来酸酐(MAH)接枝的部分氢化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SEBS)(SEBS-g—MAH)对尼龙6/SEBS的共混物聚集态结构的影响。研究结果表明,SEBS—g—MAH上的MAH侧基和尼龙6的端氨基发生了缩合反应,增加了尼龙6和SEBS的界面相互作用.透射电镜(TEM)的结果表明,当SEBS在尼龙6/SEBS共混物中为分散相时,SEBS-g—MAH使得分散相颗粒尺寸明显减小,两相界面变得模糊.示差扫描量热仪(DSC)的研究结果表明,SEBS-g—MAH的引入对尼龙6/SEBS共混物的熔融峰、结晶峰和结晶度都有明显的影响.因此SEBS-g—MAH与SEBS相比能更有效地与尼龙6相容,在很大程度上改变了尼龙6/SEBS共混体系的聚集态结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号