首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
纳米TiO2掺杂对低密度聚乙烯空间电荷行为的影响   总被引:1,自引:0,他引:1  
本文利用压力波法(PWP)研究了低密度聚乙烯(LDPE)以及掺杂0.5%(质量分数)TiO2的低密度聚乙烯在高电场下的空间电荷分布及其等温衰减特性,结合红外光谱(IR)、扫描电镜(SEM)和热刺激电流(TSC)谱研究了掺杂前后的微观形貌和陷阱能级的变化.结果表明,掺杂改变了电荷的注入和积累分布;其精细结构产生了较深的陷阱能级,这对聚乙烯高压电力电缆中电树枝的引发和生长的抑制有应用价值.  相似文献   

2.
为充分利用红枣精深加工产生的废弃物,以枣核(JP)和低密度聚乙烯(LLDPE)为主要材料,采用注塑成型法制备JP/LLDPE复合材料,并对其静态力学性能(拉伸、弯曲和冲击)和动态力学性能(动态黏弹性、蠕变行为和应力松弛行为)进行系统测试分析.静态力学性能分析表明,随JP含量的增加,JP/LLDPE复合材料的拉伸强度和冲...  相似文献   

3.
通过热处理方法得到表面不含羟基(—OH)的纳米MgO颗粒, 采用母料法制备了10wt% 纳米MgO/低密度聚乙烯(LDPE)复合材料, 研究了纳米MgO/LDPE复合材料在70 kV/mm直流电场下的空间电荷特性, 评估了该方法对纳米颗粒分散的效果及工业化应用推广价值。结果表明:表面羟基化对纳米MgO/LDPE复合材料变温体积电阻率及介电特性的影响不大, 空间电荷积累量增加。当纳米MgO 掺杂量为1wt%时, 复合材料的电性能最佳。   相似文献   

4.
为了探讨胶原蛋白(HC)和相容剂马来酸酐接枝低密度聚乙烯(LDPE-g-MAH)对聚合物材料性能产生的影响,以低密度聚乙烯(LDPE)为基体,用共混挤出的方法制备了HC/LDPE复合材料和HC/LDPE-MAH复合材料,并将复合材料注塑成不同规格样条。通过力学性能测试、SEM和热分析等表征方法研究了HC和LDPE-g-MAH含量对HC/LDPE及HC/LDPE-MAH复合材料结构和性能的影响。结果表明:当HC加入量为5wt%时,HC/LDPE复合材料拉伸强度达到最大值15.824 MPa;LDPE-g-MAH的加入可明显改善界面粘结性,提高材料力学性能及热稳定性,当HC含量为20wt%,LDPE-g-MAH含量为4wt%时,HC/LDPE-MAH复合材料的拉伸性能最优。  相似文献   

5.
利用熔融共混法制得不同纳米SiC质量分数(0.5%、2.0%、3.0%)的纳米SiC/低密度聚乙烯(LDPE)复合材料,研究了添加纳米SiC颗粒对LDPE介电性能的影响。利用SEM观测了纳米SiC颗粒的分散特性,利用电声脉冲(PEA)法测得40 kV/mm场强作用下纳米SiC/LDPE复合材料的空间电荷分布特性。利用热刺激电流(TSC)进一步验证纳米SiC添加能够提高LDPE的陷阱浓度。结果表明:纳米SiC颗粒能够均匀地分散在LDPE中,未出现较大的团聚现象。纳米SiC质量分数为0.5%、2.0%和3.0%的纳米SiC/LDPE复合材料空间电荷注入量明显低于LDPE。短路600 s后的残留空间电荷密度远小于LDPE。纳米SiC/LDPE复合材料的空间电荷注入量与电导率均随着纳米SiC的增加而减少。纳米SiC质量分数为3.0%的纳米SiC/LDPE复合材料场强非线性系数为2.6,远小于LDPE的4.3。TSC曲线表明纳米SiC/LDPE复合材料内部制造了大量的陷阱,抑制了载流子在材料内部的输运,从而阻碍了空间电荷的迁移和积聚。   相似文献   

6.
利用4-氨基甲基吡啶与马来酸酐接枝线型低密度聚乙烯(LLDPE-g-MAH)成功制备了氨基甲基吡啶接枝线型低密度聚乙烯(LLDPE-g-Py),然后采用熔融共混法制备了改性的BN/LLDPE(mBN/LLDPE)复合材料。深入研究了mBN/LLDPE复合材料的热性能和力学性能等。结果表明,LLDPE-g-Py的加入,使mBN/LLDPE复合材料的导热性能得到很大提升,但LLDPE-g-Py过多会导致其耐热性降低。为了改善复合材料的耐热性,将LLDPE-g-Py质量分数固定为10%。当BN质量分数为40%时,mBN/LLDPE复合材料的导热系数达到了0.95 W/(m·K),为纯LLDPE导热系数(0.32 W/(m·K))的3倍。同时,mBN/LLDPE复合材料的拉伸强度在小幅度下降的情况下,其断裂伸长率得到明显的改善。  相似文献   

7.
目的以石墨烯/低密度聚乙烯(LDPE)复合包装材料为研究对象,讨论石墨烯、石墨烯微片对低密度聚乙烯薄膜力学性能、颜色、透光率及透氧率的影响。方法使用熔融共混方法制备不同石墨烯质量分数的石墨烯/LDPE复合材料,检测并比较其性能变化。结果石墨烯以及石墨烯微片的加入,使LDPE薄膜的弹性模量提高了9%~50%,横纵向拉伸强度提高了2%~30%,透光率降低了10%~60%,透氧率提高了10%~15%。结论由于石墨烯比表面积大、刚性高,对LDPE材料的拉伸强度、弹性模量等力学性能有明显改善,同时可提高薄膜透氧率,加深LDPE材料的颜色,降低薄膜透光率。  相似文献   

8.
生物炭复合材料因其良好的性能备受关注,但较差的抗冲击性能限制了其更进一步的应用。文中以短切芳纶、生物炭和线型低密度聚乙烯(LLDPE)为原料采用注塑工艺制备复合材料,探究了短切芳纶对生物炭/LLDPE复合材料性质与性能的影响规律。结果表明,短切芳纶的添加没有改变生物炭/LLDPE复合材料的晶面结构,短切芳纶、生物炭与LLDPE之间具有较好的界面相容性。短切芳纶增大了复合材料的热失重速率峰温,提高了复合材料的热稳定性、耐热性与结晶度。生物炭/LLDPE复合材料具有较佳的力学性能,其弯曲强度、弯曲模量、拉伸强度和拉伸模量分别为14.28 MPa,0.64 GPa,12.02 MPa和0.25 GPa。短切芳纶的添加降低了复合材料的弯曲强度、弯曲模量、拉伸强度、拉伸模量、抗蠕变强度和抗应力松弛能力,但是提高了复合材料的刚度、弹性尤其是韧性,复合材料的抗冲击强度最高可达9.40 kJ/m2。制备的复合材料克服了生物炭复合材料的脆性缺陷,对于进一步拓宽生物炭复合材料的应用范围具有重要意义。  相似文献   

9.
改性微晶纤维素/线性低密度聚乙烯复合材料的流变性能   总被引:1,自引:0,他引:1  
采用硅烷偶联剂3-氨基丙基三乙氧基硅烷(KH-550)对微晶纤维素(MCC)进行改性,通过熔融共混法制备了改性MCC/LLDPE复合材料,并对复合材料的流变行为和动态力学性能进行了研究。动态流变测试结果表明,所有复合材料的储能模量、损耗模量和复数黏度随着MCC含量的增加而增加,而受温度的影响变化不大。稳态流变结果表明,MCC/LLDPE复合材料熔体均为假塑性流体,在高剪切速率下复合材料较纯LLDPE有着更低的剪切黏度。动态力学分析结果表明,MCC的加入大大提高了复合材料的刚性。  相似文献   

10.
分别采用添加纳米ZnO和纳米蒙脱土(MMT)粒子的方法提高低密度聚乙烯(LDPE)的介电性能,选择偶联剂对纳米粒子进行表面修饰,并利用熔融共混法制备了纳米ZnO/LDPE和纳米MMT/LDPE复合材料,通过XRD、FTIR和DSC对试样进行表征。研究了复合材料的交流击穿特性,对试样进行了空间电荷试验。结果表明:通过偶联剂修饰,纳米粒子与聚合物之间的界面结合得到改善,且纳米粒子在基体中的分散性更好;同时复合材料的结晶速率提高,结晶结构更完善;添加纳米粒子可以不同程度地提高LDPE的击穿场强,当纳米ZnO和纳米MMT的质量分数均为3wt%时,复合材料的击穿场强达到最大,分别比纯LDPE的击穿场强高出11.0%和10.3%;纳米ZnO和纳米MMT都有抑制空间电荷的作用,且ZnO的抑制效果更明显。  相似文献   

11.
采用先开环聚合后取代的方法合成了聚二苯胺磷腈(PDAP),将PDAP与低密度聚乙烯(LDPE)熔融共混制得复合材料,采用傅立叶变换红外光谱(FT-IR)、广角X射线衍射(WAXD)、热重(TGA)、差示扫描量热(DSC)、动态热机械分析(DMTA)等方法,对PDAP/LDPE共混物的性能进行表征。结果表明,LDPE/PDAP共混物具有比LDPE更高的热稳定性;LDPE/PDAP共混物出现了两个玻璃化转变,相对于纯组分而言发生了偏移;广角X射线衍射表明LDPE/PDAP共混物结晶度相对于LDPE有所降低,同时发现有新的晶型出现,动态热机械分析表明LDPE/PDAP出现了α、β、γ三个明显的转变,并且与PDAP的添加量存在良好的相关性。  相似文献   

12.
研究了线性双峰聚乙烯(LBPE)、高压聚乙烯(LDPE)与线性低密度聚乙烯(LLDPE)共混物熔体的流变行为和力学性能。讨论了共混物的组成、剪切应力和剪切速率对熔体粘度和膨胀比的影响。结果说明,共混物熔体为假塑性流体,LBPE含量为70%时熔体粘度最大,含量高于60%时挤出胀大变小,含量高于40%时力学强度增大。  相似文献   

13.
以线性低密度聚乙烯(LLDPE)-g-马来酸酐(MA)作为相容剂制备了可光催化降解的TiO_2-(LLDPE-gMA)/LDPE薄膜。采用SEM、XRD、FT-IR对制备的TiO_2-(LLDPE-g-MA)/LDPE薄膜样品进行了表征。由于引入的LLDPE-g-MA改善了纳米TiO_2与LDPE之间的相容性,TiO_2-(LLDPE-g-MA)/LDPE薄膜具有更高的伸长率。SEM结果显示,LLDPE-g-MA显著削弱了纳米TiO_2在LDPE中的团聚,使高分散度的纳米TiO_2具备更高的光催化降解效率,增加了降解过程中的膜质量的损失。  相似文献   

14.
制备了硫酸钙晶须(CSW)增强低密度聚乙烯(LDPE)(LDPE/CSW)复合材料,考察了CSW用量对复合体系的界面结构、抗拉性能、熔融和结晶特性以及热分解行为的影响规律。结果表明,CSW在LDPE基体中分散均匀且界面结合良好,提高了抗拉强度和弹性模量,但降低了断裂伸长率和拉伸韧度,在CSW用量为15%(wt,质量分数)制得的LDPE/CSW复合材料的抗拉强度为13.18MPa,弹性模量为158.98MPa,断裂伸长率为167.53%,拉伸韧度为20.02MJ/m~3;CSW的存在对LDPE相的熔融和结晶温度影响甚微,但使LDPE/CSW复合材料的结晶度降低和热稳定性得到提高。  相似文献   

15.
为制备接枝聚乙烯与SiO2的复合材料,赋予其新的特殊性能,首先,通过预辐照和悬浮接枝技术制备了低密度聚乙烯接枝聚苯乙烯(LDPE-g-PS),通过表面接枝制备了PS改性纳米SiO2(PS@nano-SiO2);然后,将LDPE-g-PS与PS@nano-SiO2熔融共混,制备了PS@nano-SiO2/LDPE-g-PS复合材料;最后,利用FTIR、SEM、DSC和电子拉力机等对材料的结构及性能进行了研究。结果表明:PS已经分别接枝到LDPE和纳米SiO2上;在PS@nano-SiO2/LDPE-g-PS复合材料中,SiO2在LDPE-g-PS内达到纳米级分散,并形成独特的纤维状网络结构;2wt%PS@nano-SiO2/LDPE-g-PS复合材料的冲击强度比LDPE-g-PS提高了99.3%;与LDPE-g-PS相比,PS@nano-SiO2/LDPE-g-PS复合材料的结晶温度升高,击穿场强比LDPE的高1.4倍。所得结论表明PS@nanoSiO2/LDPE-g-PS复合材料的性能较好。  相似文献   

16.
在光引发剂存在的条件下,利用紫外光对甲基乙烯基硅橡胶/线性低密度聚乙烯(MVQ/LLDPE)热塑弹性体进行辐射交联改性,通过凝胶含量、力学性能和热延伸测试,以及差示扫描量热法(DSC)和扫描电镜(SEM)分析,考察其交联特性及相关力学性能。实验结果表明,凝胶含量随光引发剂用量先增加后减小,在1%时出现极大值88%。凝胶含量随着辐照时间快速增加,当辐照时间为6s时,凝胶含量可以达到89%。随着辐照时间的延长,材料的拉伸强度显著提高,而断裂伸长率和热延伸率逐渐下降。扫描电镜(SEM)照片表明,紫外光交联提高了MVQ和LLDPE两相的相容性。差示扫描量热法(DSC)结果表明,紫外光交联可使材料的熔点从124.6℃下降到112.3℃,熔融焓由39.09 J/g下降到32.22 J/g。  相似文献   

17.
聚乙烯自增强复合材料的制备及力学性能   总被引:3,自引:0,他引:3  
采用超高模聚乙烯纤维分别增强高密度聚乙烯和低密度聚乙烯基体,在不同的工艺条件下制备样品,对样品进行纵横向拉伸和剪切性能的测试,探讨聚乙烯自增强复合材料界面性能。  相似文献   

18.
为探讨纳米ZnO/低密度聚乙烯(LDPE)复合材料的介电特性,首先,采用硅烷偶联剂和钛酸酯偶联剂对纳米ZnO进行改性,并利用两步法制备了不同纳米ZnO质量分数、不同纳米ZnO粒径、不同纳米ZnO表面修饰方式和不同冷却方式的纳米ZnO/LDPE复合材料;然后,通过FTIR、SEM、DSC和热激电流(TSC)测试了纳米ZnO在基体中的分散情况、复合材料的等温结晶过程参数变化及陷阱密度;最后,在不同实验温度下分别进行了交流击穿、绝缘电导率、介电常数和空间电荷实验。结果表明:纳米ZnO的加入使纳米ZnO/LDPE复合材料内部陷阱深度和密度均有所增加;当纳米ZnO的粒径为40 nm且质量分数为3%时,复合材料的结晶速度最快,纳米ZnO在基体中的分散性较好,击穿场强达到最高值133.3 kV/mm,电导率及介电常数也相对较低,加压时复合材料内部空间电荷少,短路时释放电荷速度快,介电性能较好;由于纳米粒子增加了材料内部的热传导速率,降低了复合材料随着温度升高而降解的速度,因而相对于纯LDPE,随着实验温度的提高,纳米ZnO/LDPE复合材料的击穿场强下降幅度及电导率上升幅度均较小。   相似文献   

19.
采用球磨、气流粉碎和喷雾干燥等物理方法对麦草碱木质素分别进行预处理,制备不同结构特征的木质素颗粒。结果表明,气流粉碎木质素的平均粒径最小,为3.01μm,其次为球磨木质素和喷雾干燥木质素,平均粒径分别为16.02μm和27.23μm。气流粉碎木质素的比表面积最大,达到21.87 m2/g,球磨和喷雾干燥木质素的比表面积分别为2.61 m2/g和1.90m2/g。将3种预处理方法制备的木质素颗粒分别与低密度聚乙烯(LDPE)熔融共混制备木质素/LDPE复合材料,结果表明,在木质素质量分数相同时,采用喷雾干燥木质素制备的复合材料的拉伸强度比气流粉碎木质素大0.4MPa,比球磨木质素大1.5MPa。微观结构分析表明,喷雾干燥木质素在LDPE中分散最均匀,与LDPE相之间的结合力较好。  相似文献   

20.
用模压发泡法制备了高密度聚乙烯(HDPE)/低密度聚乙烯(LDPE)共混发泡材料,研究了偶氮二甲酰胺(AC)发泡剂)、HDPE的用量及模压发泡工艺对于HDPE/LDPE共混泡沫的表观密度、力学性能的影响。结果表明,随着HDPE用量增加,共混发泡材料的表观密度、撕裂强度和拉伸强度均逐渐增加。在一定范围内,AC发泡剂用量增加,泡沫材料的表观密度和力学性能先下降后增加。发泡时间为10min时泡沫表观密度较低,再延长发泡时间,泡沫表观密度变化较小。在0MPa~10MPa范围,模压压力增加,泡沫表观密度缓慢下降。在温度为170℃~180℃范围内,温度升高,泡沫密度逐渐下降。电镜扫描图显示,HDPE/LDPE共混发泡材料泡孔均匀,且多为闭孔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号