首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using the correlation between the radiance or Doppler velocity and the extrapolated magnetic field, we determined the emission heights of a set of solar transition region lines in an equatorial coronal hole and in the surrounding quiet Sun region. We found that for all of the six lower-transition-region lines, the emission height is about 4-5 Mm in the equatorial coronal hole, and around 2 Mm in the quiet Sun region. This result confirms the previous findings that plasma with different temperature can coexist at the same layer of transition region. In the quiet Sun region, the emission height of the upper-transition-region line Ne viii is almost the same that of the lower-transition-region line, but in the coronal hole, it is twice as high. This difference reveals that the outflow of Ne Ⅷ is a signature of solar wind in the coronal hole and is just a mass supply to the large loops in the quiet Sun.  相似文献   

2.
We present observations of a UV event which occurred in a polar coronal hole. They were obtained by SUMER on SOHO in several chromospheric and transition region spectral lines. Its birth site was about 50 arc sec inside the limb and in a network lane showing a net outflow before its initiation. The event had an extension of about 5 arc sec along the slit, a duration of about 3 min and was characterized by a large increase of intensity together with a significant line broadening with, however, downflows of about 50 km s–1 being dominant. Proper motions with a velocity of about 10 km s–1 were also observed. The event appeared at middle transition (Ovi) temperatures and it simultaneously showed up in chromospheric (Oi, Ly ) and low transition region (Cii) temperatures. We discuss this event in view of different scenarios to account for it. Our event could be a part of the large family of quiet-Sun explosive events observed by Ryutova and Tarbell (2000) taking place in polar coronal holes that are triggered by magnetic reconnection in the low solar atmosphere.  相似文献   

3.
4.
New X-ray observations of the north polar region taken from the X-ray Telescope (XRT) of the Hinode spacecraft are used to analyze several time sequences showing small loop brightenings with a long ray above. We focus on the formation of the jet and discuss scenarios to explain the main features of the events: the relationship with the expected surface magnetism, the rapid and sudden radial motion, and possibly the heating, based on the assumption that the jet occurs above a null point of the coronal magnetic field. We conclude that 2-D reconnection models should be complemented in order to explain the observational details of these events and suggest that alternative scenarios may exist.  相似文献   

5.
We report on the occurrence of Hα dimming associated with a sigmoid eruption in a quiet-sun region on 14 August 2001. The coronal sigmoid in soft X-ray images from the Yohkoh Soft X-ray Telescope was located over an Hα filament channel. Its eruption was accompanied by a flare of GOES X-ray class C2.3 and possibly associated with a halo coronal mass ejection (CME) observed with the Large Angle and Spectroscopic Coronagraphs (LASCO) on board the Solar and Heliospheric Observatory (SOHO). During the eruption, coronal bipolar double dimming took place at the regions with opposite magnetic polarities around the two sigmoid ends, but the underlying chromospheric channel did not show observable changes corresponding to the coronal eruption. Different from the erupting coronal sigmoid itself, however, the coronal dimming had a detectable chromosphere counterpart, i.e., Hα dimming. By regarding the sigmoid as a coronal sign for a flux rope, these observations are explained in the framework of the flux rope model of CMEs. The flux rope is possibly deeply rooted in the chromosphere, and the coronal and Hα dimming regions mark its evacuated feet, through which the material is possibly fed to the halo CME.  相似文献   

6.
We present a study of the outflow velocity of the fast wind in the northern polar coronal hole observed on 21 May 1996, during the minimum of solar activity, in the frame of a joint observing program of the SOHO (Solar Heliospheric Observatory) mission. The outflow velocity is inferred from an analysis of the Doppler dimming of the intensities of the Ovi 1032, 1037 and Hi L 1216 lines observed between 1.5 R and 3.5 R with the Ultraviolet Coronagraph Spectrometer (UVCS), operating onboard SOHO. The analysis shows that for a coronal plasma characterized by low density, as derived for a polar hole at solar minimum by Guhathakurta et al. (1999), and low temperature, as directly measured at the base of this coronal hole by David et al. (1998), the oxygen outflow speed derived spectroscopically is consistent with that implied by the proton flux conservation. The hydrogen outflow is also consistent with flux conservation if the deviation from isotropy of the velocity distribution of the hydrogen atoms is negligible. Hence, for this cool and tenuous corona, the oxygen ions and neutral hydrogen atoms flow outward roughly at the same speed, which increases from 40 km s–1 at 1.5 R to 360 km s–1 at 3.1 R , with an average acceleration of the order of 4.5×103 cm s–2. The highly anisotropic velocity distributions of the Ovi ions found in the analysis confirm that the process which is heating the oxygen ions acts preferentially across the magnetic field.  相似文献   

7.
An analysis of solar polar coronal hole (PCH) areas since the launch of the Solar Dynamics Observatory (SDO) shows how the polar regions have evolved during Solar Cycle 24. We present PCH areas from mid-2010 through 2013 using data from the Atmospheric Imager Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard SDO. Our analysis shows that both the northern and southern PCH areas have decreased significantly in size since 2010. Linear fits to the areas derived from the magnetic-field properties indicate that, although the northern hemisphere went through polar-field reversal and reached solar-maximum conditions in mid-2012, the southern hemisphere had not reached solar-maximum conditions in the polar regions by the end of 2013. Our results show that solar-maximum conditions in each hemisphere, as measured by the area of the polar coronal holes and polar magnetic field, will be offset in time.  相似文献   

8.
Bogod  V. M.  Grebinskij  A. S. 《Solar physics》1997,176(1):67-86
We present here the results of emission tomography studies, based on a new differential deconvolution method (DDM) of Laplace transform inversion, which we use for reconstruction of the coronal emission measure distributions in the quiet Sun, coronal holes and plage areas. Two methods are explored. The first method is based on the deconvolution of radioemission brightness spectra in a wide wavelength range (1 mm–100 cm) for temperature profile reconstructions from the corona to the deeper chromosphere. The second method uses radio brightness measurements in the cm–dm range to give a coronal column emission measure (EM).Our results are based on RATAN-600 observations in the range 2.0–32 cm supplemented by the data of other observatories during the period near minimum solar activity. This study gives results that agree with known estimates of the coronal EM values, but reveals the absence of any measurable quantities of EM in the transition temperature region 3 × 104 –105 K for all studied large-scale structures. The chromospheric temperature structure (T e = 20,000–5800 K) is quite similar for all objects with extremely low-temperature gradients at deep layers.Some refraction effects were detected in the decimeter range for all Types of large-scale structures, which suggests the presence of dense and compact loops (up to N e =(1–3)× 109 cm-3 number density) for the quiet-Sun coronal regions with temperature T e > 5× 10-5 K.  相似文献   

9.
10.
We use observations of the green corona low-brightness regions to construct a time series of a polar coronal hole area from 1939 to 1996, covering 5 solar cycles. We then perform a power-spectral analysis of the monthly data time series. Several persistent significant periodicities appear in the spectra, which are related with those found in solar magnetic flux emergence, geomagnetic storm sudden commencements and cosmic-ray flux at Earth. Of particular importance are the peak at around 1.6–1.8 yr recently found in cosmic-ray intensity fluctuations, and the peak at around 1 yr, also identified in coronal hole magnetic flux variations. Additional interesting features are the peaks close to 5 yr, 3 yr and the possible peak at around 30 yr, that were also found in other solar and interplanetary phenomena. Our results stress the physical connection between the solar magnetic flux emergence and the interplanetary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.  相似文献   

11.
Thanks to the high-resolution images from the X-ray telescope (XRT) aboard the Hinode satellite, X-ray bright points (XBPs) in the quiet region of the Sun are resolved and can be seen to have complex loop-like structures. We measure the orientation of such loop structures for 488 XBPs picked up in 26 snapshot X-ray images near the disk center. The distribution of the orientation is slightly but clearly biased to the east – west direction: the random distribution is rejected with a significance level of 1% by the χ 2-test. The distribution is similar to the orientation distribution for the bipolar magnetic fields. The XBP orientation is, however, much more random than that of the bipolar magnetic fields with similar size. 24% of the XBPs are due to emerging bipoles, while the remaining 76% are due to chance encounters of opposite polarities.  相似文献   

12.
Astronomy Letters - We consider the gravitational energy of the material falling from the corona as a source of energy for the formation of spicules in the solar chromosphere. We show that in the...  相似文献   

13.
林元章 《天文学进展》1995,13(4):325-334
主要论述宁静日冕洞,以及日冕加热问题的研究现状。讨论了宁静日冕的理论模型、观测模型和混合模型,以及冕洞区大气模型和太阳风加热问题。最后对计划中的日冕空间探测作了简要介绍。  相似文献   

14.
In this paper, a potential field extrapolation and three nonlinear force-free (NLFF) field extrapolations (optimization, direct boundary integral (DBIE), and approximate vertical integration (AVI) methods) are used to study the spatial configuration of magnetic field in the quiet Sun. It is found that differences in the computed field strengths among the three NLFF and potential fields exist in the low layers. However, they tend to disappear as the height increases, and the differences are of the order of 0.1 gauss when the height exceeds ≈ 2000 km above the photosphere. The difference in azimuth angles between each NLFF field model and the potential field is as follows: for the optimization field, it decreases evidently as the height increases; for the DBIE field, it almost stays constant and shows no significant change as the height increases; for the AVI field, it increases slowly as the height increases. Our analysis shows that the reconstructed NLFF fields deviate significantly from the potential field in the quiet Sun.  相似文献   

15.
The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from the Fourier spectrum of the magnetogram. The spectral estimate, in which the extrapolated field is assumed to be random and homogeneous with Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHO’s MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 Mm2 patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minima shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 〈|φ|〉=1.0×1019 Mx distributed randomly with density n=0.007 Mm−2.  相似文献   

16.
We present observations of the formation process of a small-scale filament on the quiet Sun during 5?–?6 February 2016 and investigate its formation cause. Initially, a small dipole emerged, and its associated arch filament system was found to reconnect with overlying coronal fields accompanied by numerous extreme ultraviolet bright points. When the bright points faded, many elongated dark threads formed and bridged the positive magnetic element of the dipole and the external negative network fields. Interestingly, an anticlockwise photospheric rotational motion (PRM) set in within the positive endpoint region of the newborn dark threads following the flux emergence and lasted for more than 10 hours. Under the drive of the PRM, these dispersive dark threads gradually aligned along the north-south direction and finally coalesced into an inverse S-shaped filament. Consistent with the dextral chirality of the filament, magnetic helicity calculations show that an amount of negative helicity was persistently injected from the rotational positive magnetic element and accumulated during the formation of the filament. These observations suggest that twisted emerging fields may lead to the formation of the filament via reconnection with pre-existing fields and release of its inner magnetic twist. The persistent PRM might trace a covert twist relaxation from below the photosphere to the low corona.  相似文献   

17.
It is shown that the combined use of radio observations of the quiet Sun and UV line intensities allows to compute the absolute coronal abundance of the elements. The abundances found by this method agree very well with the most recent determinations. A model of the transition region and corona in hydrostatic equilibrium is also presented. Similarities and differences with models based on UV observations are discussed.  相似文献   

18.
We present a series of numerical simulations of the quiet-Sun plasma threaded by magnetic fields that extend from the upper convection zone into the low corona. We discuss an efficient, simplified approximation to the physics of optically thick radiative transport through the surface layers, and investigate the effects of convective turbulence on the magnetic structure of the Sun’s atmosphere in an initially unipolar (open field) region. We find that the net Poynting flux below the surface is on average directed toward the interior, while in the photosphere and chromosphere the net flow of electromagnetic energy is outward into the solar corona. Overturning convective motions between these layers driven by rapid radiative cooling appears to be the source of energy for the oppositely directed fluxes of electromagnetic energy.  相似文献   

19.
P. R. Young  K. Muglach 《Solar physics》2014,289(9):3313-3329
A blowout jet occurred within the south coronal hole on 9 February 2011 at 09:00 UT and was observed by the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory, and by the EUV Imaging Spectrometer (EIS) and X-Ray Telescope (XRT) onboard the Hinode spacecraft during coronal-hole monitoring performed as part of Hinode Operations Program No. 177. Images from AIA show expanding hot and cold loops from a small bright point with plasma ejected in a curtain up to 30 Mm wide. The initial intensity front of the jet had a projected velocity of 200 km?s?1, and the line-of-sight (LOS) velocities measured by EIS are between 100 and 250 km?s?1. The LOS velocities increased along the jet, implying that an acceleration mechanism operates within the body of the jet. The jet plasma had a density of 2.7×108 cm?3 and a temperature of 1.4 MK. During the event a number of bright kernels were seen at the base of the bright point. The kernels have sizes of ≈?1000 km, are variable in brightness, and have lifetimes of 1?–?15 minutes. An XRT filter ratio yields temperatures of 1.5?–?3.0 MK for the kernels. The bright point existed for at least ten hours, but disappeared within two hours after the jet, which lasted for 30 minutes. HMI data reveal converging photospheric flows at the location of the bright point, and the mixed-polarity magnetic flux canceled over a period of four hours on either side of the jet.  相似文献   

20.
We present the results of solar observations at 20 and 25 MHz with the Ukrainian T-shaped Radio telescope of the second modification (UTR-2) in the interferometric session from 27 May to 2 June 2014. In this case, the different baselines 225, 450, and 675 m between the sections of the east–west and north–south arms of UTR-2 were used. On 29 May 2014, strong sporadic radio emission consisting of Type III, Type II, and Type IV bursts was observed. On other days, there was no solar radio activity in the decameter range. We discuss the observation results of the quiet Sun. Fluxes and sizes of the Sun in east–west and north–south directions were measured. The average fluxes were 1050?–?1100 Jy and 1480?–?1570 Jy at 20 and 25 MHz, respectively. The angular sizes of the quiet Sun in equatorial and polar directions were \(55'\) and \(49'\) at 20 MHz and \(50'\) and \(42'\) at 25 MHz. The brightness temperatures of the radio emission were \({T_{\mathrm{b}}} = 5.1 \times{10^{5}}~\mbox{K}\) and \({T_{\mathrm{b}}} = 5.7 \times{10^{5}}~\mbox{K}\) at 20 and 25 MHz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号