首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Ability of metabolic adaptation in upland and lowland rice (Oryza sativa L.) seedlings to flooding stress was compared. Flooding stress increased alcohol dehydrogenase (ADH) activity and ethanol concentration in shoots and roots of the upland and lowland rice seedlings. The difference in ADH activity and ethanol concentration in shoots between the upland and lowland rice was not apparent. However, both ADH activity and ethanol concentration in roots of the lowland rice were 2-fold greater than those in roots of the upland rice, suggesting that flooding-induction of ethanolic fermentation in lowland rice roots may be significantly greater than that in the upland rice roots. Since flooding often causes the anaerobic conditions in rooting zone than aerial part of plants and ethanolic fermentation is essential to survive in the anaerobic conditions, the ability of metabolic adaptation in lowland rice seedlings to flooding stress may be greater than that in upland rice seedlings.  相似文献   

2.
水、旱条件下水稻茎秆主要抗倒伏性状的QTL分析   总被引:10,自引:1,他引:9  
以粳型旱稻IRAT109和粳型水稻越富杂交的116个DH株系的群体为材料,利用已构建的分子标记连锁图(包括94个RFLP标记和71个SSR标记),定位了水稻茎秆主要抗倒伏性状的QTL。在水田、旱田栽培条件下,考查了乳熟期DH系及其亲本的茎基粗、茎秆长及茎秆强度等性状。相关分析表明,茎基粗与茎秆长、茎基粗与茎秆强度及茎秆长与茎秆强度间均呈极显著正相关。利用QTLMAPPER进行水、旱田单环境定位分析及水、旱田联合定位分析定位了控制这些性状的QTL。水、旱田单环境定位分析结果表明:3个性状共检测到9个加性QTL和5对上位性QTL;联合定位分析表明:茎基粗、茎秆长共检测到6个加性QTL和6对上位性QTL,其中6个加性QTL和1对上位性QTL在两种方法下都检测到。旱田条件下检测到2个加性及2对上位性QTL(bctla、ct9、c16a-c16c和cs5-cs12)对表型变异的贡献率(简称贡献率)大于30%。这些高贡献率QTL可能对旱田条件下旱稻抗倒伏分子育种有重要意义。  相似文献   

3.
The role of aquaporin RWC3 in drought avoidance in rice   总被引:24,自引:0,他引:24  
Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and drought resistance still remains elusive. From an agronomic viewpoint, upland rice is traditionally considered as showing drought avoidance. In the investigation of different morphological and physiological responses of upland rice (Oryza sativa L. spp indica cv. Zhonghan 3) and lowland rice (O. sativa L. spp japonica cv. Xiushui 63) to water deficit, we observed young leaf rolling and the remarkable decline of cumulative transpiration in the upland rice. The expression of water channel protein RWC3 mRNA was increased in upland rice at the early response (up to 4 h) to the 20% polyethylene glycol (PEG) 6000 treatment, whereas there was no significant expression changes in lowland rice. Protein levels were increased in upland rice and decreased in lowland rice at 10 h after the water deficit. The up-regulation of RWC3 in upland rice fits well with the knowledge that upland rice adopts the mechanism of drought avoidance. The physiological significance of this RWC3 up-regulation was then explored with the over-expression of RWC3 in transgenic lowland rice (O. sativa L. spp japonica cv. Zhonghua 11) controlled by a stress-inducible SWPA2 promoter. Compared to the wild-type plant, the transgenic lowland rice exhibited higher root osmotic hydraulic conductivity (Lp), leaf water potential and relative cumulative transpiration at the end of 10 h PEG treatment. These results indicated that RWC3 probably played a role in drought avoidance in rice.  相似文献   

4.
Silicon deficiency and the adaptation of tropical rice ecotypes   总被引:12,自引:1,他引:11  
Although silicon (Si) is found at much higher concentrations in healthy rice crops than N, P or K, it has received far less study, particularly for upland rice. There are few reports on the existence, causes, and effects of varying Si supplies in different environments. Chemical analyses of soil, water and plant tissue samples from experiments grown on a typical weathered, acidic upland soil in Colombia found concentrations of Si which were 80-90% lower than those in a typical lowland environment. These results corroborate published findings from West Africa and Hawaii, and lend support to a conclusion that acid-soil upland rice environments in the tropics tend to be deficient in Si, increasing disease damage, among other effects. Critical values for diagnosis of Si deficiency in soils, water and rice husk tissue are suggested. These are reasonably consistent with, but extend the application of previously published values derived from lowland rice studies to upland environments, and use simpler sampling and analysis methods. A strong correlation was found (r = -0.91) between high husk Si concentration and low husk discoloration disease damage, among diverse rice genotypes grown in the uplands. These genotypic differences were mainly explained by their ecotypic affinities: those belonging to the tropical japonica ecotype exhibited 93% higher husk Si concentrations than indica ecotypes (ecotypic means of 23 vs. 12 mg kg-1 ). This is consistent with a hypothesis that the tropical japonicas may have adapted to Si deficiency in their native upland environment by evolving mechanisms to attain relatively higher tissue Si concentrations than indicas, which are believed to have evolved in the lowlands, where the Si supply is generally ample. Increased understanding of Si-mediated disease resistance in different rice environments and ecotypes could help breeders combine the high yield potential of indica types with the more durable disease resistance of the japonicas, and could contribute to the development of integrated disease management strategies.  相似文献   

5.
Parallel domestication has been widely acknowledged but itsgenetic basis remains largely unclear. As an important rice ecotype, upland rice was assumedly domesticated multiple times in two rice subspecies (Indica and Japonica) and provides a feasible system to explore the genetic basis of parallel domestication. To uncover the genome‐wide pattern of genetic differentiation between upland and lowland rice and explore the parallelism of genetic changes during upland rice domestication, we obtained whole‐genome sequences of 95 rice landraces and yielded genome‐wide expression data for five tissues of representative accessions of upland and lowland rice. Our phylogenetic analyses confirmed multiple domestications of the upland ecotype in two rice subspecies. Genomic scans based on resequencing data identified substantial differentiation between the upland and lowland ecotypes with 11.4% and 14.8% of the genome diverged between the two ecotypes in Indica and Japonica, respectively. Further genome‐wide gene expression analyses found that 30% of effectively expressed genes were significantly differentiated between two ecotypes, indicating the importance of regulation changes in the domestication of upland rice. Importantly, we found that only 1.8% of differentiated genomes and 1.6% of differentially expressed genes were shared by upland Indica and upland Japonica, suggestive of largely unparallel genetic alterations during upland rice domestication. These findings not only provide new insights into the genetic basis of parallel domestication at the genome scale but could also facilitate geneticimprovement and breeding of rice and crops in general.  相似文献   

6.
Leaf gas exchange of upland and lowland rice cultivars were measured during late vegetative and during grain filling stages in the field under upland and lowland growth conditions. The rate of photosynthesis and water use efficiency (the rate of photosynthesis/the rate of transpiration) under upland conditions decreased with ageing, but generally varied little among four cultivars. At mid-grain filling under lowland conditions, upland cultivars showed lower rates of photosynthesis and transpiration than the lowland cultivars with concomitant reduction in whole plant conductance. At this stage, water use efficiency was higher under upland conditions than under lowland conditions, particularly in the upland cultivars. Water stress reduced the rate of photosynthesis without altering water use efficiency.  相似文献   

7.
Lian HL  Yu X  Lane D  Sun WN  Tang ZC  Su WA 《Cell research》2006,16(7):651-660
Aquaporins play a significant role in plant water relations. To further understand the aquaporin function in plants under water stress, the expression of a subgroup of aquaporins, plasma membrane intrinsic proteins (PIPs), was studied at both the protein and mRNA level in upland rice (Oryza sativa L. cv. Zhonghan 3) and lowland rice (Oryza sativa L. cv. Xiushui 63) when they were water stressed by treatment with 20% polyethylene glycol (PEG). Plants responded differently to 20% PEG treatment. Leaf water content of upland rice leaves was reduced rapidly. PIP protein level increased markedly in roots of both types, but only in leaves of upland rice after 10 h of PEG treatment. At the mRNA level, OsPIP1,2, OsPIP1,3, OsPIP2;1 and OsPIP2;5 in roots as well as OsPIP1,2 and OsPIP1;3 in leaves were significantly up-regulated in upland rice, whereas the corresponding genes remained unchanged or down-regulated in lowland rice. Meanwhile, we observed a significant increase in the endogenous abscisic acid (ABA) level in upland rice but not in lowland rice under water deficit. Treatment with 60 μM ABA enhanced the expression of OsPIP1;2, OsPIP2;5 and OsPIP2;6 in roots and OsPIP1;2, OsPIP2;4 and OsPIP2;6 in leaves of upland rice. The responsiveness of PIP genes to water stress and ABA were different, implying that the regulation of PIP genes involves both ABA-dependent and ABA-independent signaling oathways during water deficit.  相似文献   

8.
As one of the most widely promoted water-saving irrigation strategies for rice, alternate wetting and drying irrigation (AWD) can not only save water but also increase mineral nutrient use efficiency. In this study, we compared the growth conditions of four rice varieties (two lowland and two upland varieties) under three irrigation regimes: continuously flooded (CF), alternate wetting and moderate soil drying (AWD15) and alternate wetting and severe soil drying (AWD30). AWD15 and AWD30 enabled the plants to receive fewer irrigation events and less irrigation water than CF, thereby saving both water resources and labor. AWD15 reduced redundant vegetative growth, promoted root growth, and increased the root-shoot ratio and harvest index. AWD15 increased the grain yield, water use efficiency (WUE) and phosphorus use efficiency (PUE) of upland rice and maintained the grain yield while increasing the WUE and PUE of lowland rice. More developed root systems under AWD helped upland rice to maintain a higher water status than lowland rice when plants were subjected to soil drying, which resulted in superior performance in grain yield in upland rice. AWD30 could not reconcile the demands of higher yield and the desire to reduce irrigation water use because it decreased grain yield. The results indicate that AWD15 irrigation of rice can not only increase rice yield and WUE but also enhance PUE, which can potentially reduce the use of phosphorus fertilizers. The results provide theoretical and technical support for improving rice cultivation.  相似文献   

9.
Conventional methods for quantitative trait locus (QTL) mapping require the selection of particular traits to be measured based on assumptions as to their importance. We have tested an alternative approach for the location of QTLs—marker-evaluated selection—that makes no prior assumptions as to which traits are important. The results of phenotype selection were evaluated in the products of modified bulk-population breeding that was replicated across a range of rice ecosystems. Selection was carried out in close collaboration with farmers in bulk populations that were all derived from a cross between an Indian upland variety (Kalinga III) and a high-yielding semi-dwarf variety (IR64). Twenty-seven diverse bulks were produced that were screened with molecular markers in order to determine whether shifts could be detected in marker allele frequency as a result of selection and if such changes varied by genomic region across ecosystems. Marker loci linked to important traits for adaptation to specific environments were identified without making any prior assumptions about which traits might be important. Genomic regions from Kalinga III were strongly selected in the upland environments and regions from IR64 in the lowland ones. However, exceptions occurred where the upland parent contributed positively to lowland adaptation and vice versa. The results can be used as a basis for the development of second-cycle varieties, using marker-assisted selection to produce genotypic ideotypes for specific target environments. The very strong selection for genomic regions from the adapted parents of the wide (upland × lowland) cross indicates that, in non-marker-assisted breeding, where genetically distant parents have been used, modified backcross breeding should be efficient. A single backcross to the adapted parent for a specific ecosystem will result in a higher frequency of segregants with the desired high genetic contribution from the adapted parent.  相似文献   

10.
Two upland rice varieties (IRAT109, IAPAR9) and one lowland rice variety (Zhenshan 97B) were planted in summer and treated with both normal (full water) and drought stress in the reproductive stage. Panicle water potential (PWP) and leaf water potential (LWP) were measured every 1.0-1.5 h over 24 h on sunny days. Both PWP and LWP of upland varieties started to decrease later, maintained a higher level and recovered more quickly than that of the lowland variety. The results show that PWP can be used as an indicator of plant water status based on the parallel daily changes, and the high correlation between PWP and LWP. Similar correlations were also observed between PWP, LWP and eight traits related to plant growth and grain yield formation. PWP seemed to be more effective for distinguishing the upland rice varieties with different drought-tolerant ability. Differences in PWP and LWP between upland and lowland rice varieties were also observed at noon even under normal water conditions, implying the incorporation of the drought-tolerant mechanism to improve the photosynthesis and yield of traditional paddy rice.  相似文献   

11.
Two upland rice varieties (IRAT109, IAPAR9) and one lowland rice variety (Zhenshan 97B) were planted in summer and treated with both normal (full water) and drought stress in the reproductive stage. Panicle water potential (PWP) and leaf water potential (LWP) were measured every 1.0-1.5 h over 24 h on sunny days. Both PWP and LWP of upland varieties started to decrease later, maintained a higher level and recovered more quickly than that of the lowland variety. The results show that PWP can be used as an indicator of plant water status based on the parallel daily changes, and the high correlation between PWP and LWP. Similar correlations were also observed between PWP, LWP and eight traits related to plant growth and grain yield formation. PWP seemed to be more effective for distinguishing the upland rice varieties with different drought-tolerant ability. Differences in PWP and LWP between upland and lowland rice varieties were also observed at noon even under normal water conditions, implying the incorporation of the drought-tolerant mechanism to improve the photosynthesis and yield of traditional paddy rice.  相似文献   

12.
Bats have important ecological roles in ecosystems, but many species are threatened because of anthropogenic impacts. Tanzania has limited information on how bats respond to habitat modification. This makes it difficult to anticipate which bat species are at risk. Bat activity and species richness were assessed in five land‐use types: forest and banana–coffee (upland habitats), rice paddy, riverine and sisal estate (lowland habitats). Mist nets, harp traps and bat detectors were used to sample bats. Species richness differed between habitats. Bat activity levels were higher in lowland habitats than upland habitats. Riverine and rice paddy habitats were shown to have an important role as foraging sites for many insectivorous bats as bat species richness and activity were generally higher than other habitats. Fruit‐eating bats preferred riverine and banana–coffee habitats. We recommend using organic manure as alternatives to chemical fertilisers, and pesticide use should be avoided in rice paddies. Riparian vegetation along rivers and water bodies should be maintained as important faunal nesting, roosting and/or foraging grounds. The requirement that farming practices be at least 60 m from the river should be strictly enforced. These recommendations will help in the conservation of bats and their habitats in modified agricultural landscapes.  相似文献   

13.
Rice is known to be sensitive to soil water deficit and evaporative demand, with a greatest sensitivity of lowland‐adapted genotypes. We have analysed the responses of plant water relations and of leaf elongation rate (LER) to soil water status and evaporative demand in seven rice genotypes belonging to different species, subspecies, either upland‐ or lowland‐adapted. In the considered range of soil water potential (0 to ?0.6 MPa), stomatal conductance was controlled in such a way that the daytime leaf water potential was similar in well‐watered, droughted or flooded conditions (isohydric behaviour). A low sensitivity of LER to evaporative demand was observed in the same three conditions, with small differences between genotypes and lower sensitivity than in maize. The sensitivity of LER to soil water deficit was similar to that of maize. A tendency towards lower sensitivities was observed in upland than lowland genotypes but with smaller differences than expected. We conclude that leaf water status and leaf elongation of rice are not particularly sensitive to water deficit. The main origin of drought sensitivity in rice may be its poor root system, whose effect was alleviated in the study presented here by growing plants in pots whose soil was entirely colonized by roots of all genotypes.  相似文献   

14.
Li J  Wang D  Xie Y  Zhang H  Hu G  Li J  Dai A  Liu L  Li Z 《遗传学报》2011,38(11):547-556
Introgression lines (ILs) are valuable materials for identifying quantitative trait loci (QTLs),evaluating genetic interactions,and marker assisted breeding.A set of 430 ILs (BC5F3) containing segments from upland tropical japonica cultivar IRAT109 in a lowland temperate japonica cultivar Yuefu background were developed.One hundred and seventy-six polymorphic markers were used to identify introgressed segments.No segment from IRAT 109 was found in 160 lines.Introgressed segments of the other 270 lines covered 99.1% of the donor genome.The mean number of introgressed donor segments per individual was 3.3 with an average length of 14.4 cM.QTL analysis was conducted on basal root thickness (BRT) of the 270 ILs grown under irrigated lowland,upland and hydroponic conditions.A total of 22 QTLs affecting BRT were identified,six QTLs (qBRT3.1,qBRT3.2,qBRT6.1,qBRT8.2,qBRT9.1,and qBRT9.2) were consistently expressed under at least two environments (location and water regime),and qBRT7.2 was a new BRT QTL identified under lowland conditions.IL255 containing qBRT9.1 showed an increase of 10.09% and 7.07% BRT over cultivar Yuefu when grown under upland and lowland conditions,respectively.Using a population of 304 F2:3 lines derived from the cross IL255 × Yuefu,qBRT9.1 was validated and mapped to a 1.2 cM interval between RM24271 and RM566.The presence of qBRT9.1 explained 12% of BRT variation.The results provide upland rice ILs and BRT QTLs for analyzing the genetic basis of drought resistance,detecting favorable genes from upland rice,and rice drought resistance breeding.  相似文献   

15.
Plastid subtype ID (PS-ID) sequences were determined from sequence data based on CA repeats between genes rpl16 and rpl14 in Japanese lowland and upland cultivars. The PS-ID sequences of Japanese rice cultivars showed that there are different maternal origins between lowland and upland cultivars. One subtype, 6C7A, of PS-ID sequences was predominant in all but one Japanese lowland cultivar and carried a combination of the indica-specific subtype 8C8A and japonica-specific nuclear markers for the isozyme genotype. It is probably a nuclear-cytoplasmic recombinant resulting from natural out-crossing and succeeding self-pollination. The origin of the plastid was re-confirmed by the existence of an indica-specific deletion in the plastid genome. In contrast, the Japanese upland cultivars showed two subtypes, 7C6A and 6C7A, of PS-ID sequences. An upland-specific isozyme allele as a nuclear marker was equally predominant in cultivars carrying each subtype. The existence of these particular upland-specific nuclear and cytoplasmic genotypes suggests that the origin of Japanese upland cultivars is different from that of Japanese lowland cultivars. Cultivars carrying the upland-specific nuclear genotype are common in Southeast Asia, but the combination of the upland-specific nuclear and cytoplasmic genotypes which is the same as the Japanese upland predominant type was found in cultivars only in Taiwan and Indonesia. Japanese upland cultivars are closely related to those cultivars.  相似文献   

16.
以旱稻品种IRAT109与水稻品种越富杂交构建的DH群体的116个株系及其亲本为材料,在水、旱2种栽培条件下种植,研究了稻米蒸煮和营养品质性状的变化规律,在水、旱2个土壤水分环境下对直链淀粉含量(AC)、胶稠度(GC)、碱消值(GT)和蛋白质含量(PC)4个蒸煮和营养品质性状进行QTL定位及QTLs与环境互作分析。结果表明,以上4个品质性状在水、旱2种不同栽培条件下差异较大,说明这些性状受水分条件影响较大,旱栽条件下稻米蒸煮和营养各品质性状均有不同程度的升高,其中蛋白质含量平均提高37.9%。QTL分析结果表明,4个稻米品质性状在2个环境中的表现型值都为连续分布,均存在超亲遗传类型,共检测到7个加性效应QTL与稻米蒸煮和营养品质性状4项指标有关,分别位于第1、2、3、6、8、11染色体上,单个QTLs对性状的贡献率在1.91%~19.77%之间。位于第3染色体上控制碱消值的QGt3,第6染色体上控制直链淀粉含量的QAc6,在2个不同土壤水分条件下均与环境存在显著互作,对环境互作的贡献率分别为8.99%和47.86%。控制直链淀粉含量的2对上位性QTLs与土壤水分环境显著互作,贡献率较大,分别为32.54%和11.82%。并筛选到5个主效QTL(QGt6b、QGt8、QGt11、QGc1和QPc2)在抗旱育种中可用于蒸煮和营养各品质性状MAS改良。  相似文献   

17.
Absorption of manganese by rice under flooded and unflooded conditions   总被引:1,自引:1,他引:0  
Summary Manganese absorption by rice plants under flooded and unflooded conditions, in an upland and a lowland soil was studied. Both under flooded and unflooded conditions the rate of manganese absorption was high during 3rd to 4th week and again during 9th to 10th week.Rice grown under flooded conditions, in lowland soil absorbed more manganese and showed higher dry matter accumulation than under unflooded conditions. However manganese absorption and dry matter accumulation in rice grown under flooded conditions in upland soil were lower than under unflooded conditions.Rice grown under flooded conditions may give lower yields than rice grown under unflooded conditions due to some factor or combination of factors one of which may possibly be a high soluble iron content which interferes with the absorption of manganese.  相似文献   

18.
Switchgrass (Panicum virgatum L.) exists at multiple ploidies and two phenotypically distinct ecotypes. To facilitate interploidal comparisons and to understand the extent of sequence variation within existing breeding pools, two complete switchgrass chloroplast genomes were sequenced from individuals representative of the upland and lowland ecotypes. The results demonstrated a very high degree of conservation in gene content and order with other sequenced plastid genomes. The lowland ecotype reference sequence (Kanlow Lin1) was 139,677 base pairs while the upland sequence (Summer Lin2) was 139,619 base pairs. Alignments between the lowland reference sequence and short-read sequence data from existing sequence datasets identified as either upland or lowland confirmed known polymorphisms and indicated the presence of other differences. Insertions and deletions principally occurred near stretches of homopolymer simple sequence repeats in intergenic regions while most Single Nucleotide Polymorphisms (SNPs) occurred in intergenic regions and introns within the single copy portions of the genome. The polymorphism rate between upland and lowland switchgrass ecotypes was found to be similar to rates reported between chloroplast genomes of indica and japonica subspecies of rice which were believed to have diverged 0.2-0.4 million years ago.  相似文献   

19.
Structure of benthic Chironomidae assemblages and their spatial‐temporal dynamic were analyzed in upland and lowland habitats from the Chocancharava River basin (Córdoba, Argentina). Sampling was performed in three tributary streams and in three lowland reaches of the river during high and low rainfall periods. Characteristic taxa of upland and lowland reaches and of the different habitats in these reaches were identified using the IndVal method. Chironomidae assemblages were different between upland and lowland reaches and among habitats in each reach, as assessed by Multiresponse Permutation Procedure and Canonical Correspondence Analyses. Substrate type and current velocity were the major explanatory variables structuring the assemblages in upland reaches whereas in lowland reaches current velocity and aquatic vegetation were the most important variables. The highest richness was found in the most complex habitat units in both upland and lowland stretches as assessed by Analyses of Variance. Chironomidae larvae responded to longitudinal changes of hydraulic variables and to local variations of fluvial habitats at different reaches. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
To genetically dissect drought resistance associated with japonica upland rice, we evaluated a doubled haploid (DH) population from a cross between two japonica cultivars for seven root traits under three different growing conditions (upland, lowland and upland in PVC pipe). The traits included basal root thickness (BRT), total root number (RN), maximum root length (MRL), root fresh weight (RFW), root dry weight (RDW), ratio of root fresh weight to shoot fresh weight (RFW/SFW) and ratio of root dry weight to shoot dry weight (RDW/SDW). The BRT was significantly correlated with the index of drought resistance, which was defined as the ratio of yield under the stress of the upland condition to that under the normal lowland condition. A complete genetic linkage map with 165 molecular markers covering 1,535 cM was constructed. Seven additive quantitative trait loci (QTLs) and 15 pairs of epistatic loci for BRT and RN were identified under upland and lowland conditions, and 12 additive QTLs and 17 pairs of epistatic QTLs for BRT, RN, MRL, RFW, RFW/SFW and RDW/SDW were identified under the PVC pipe condition. Four additive QTLs and one pair of epistatic QTLs controlling IDR were also found. These QTLs individually explained up to 25.6% of the phenotypic variance. QTL × environment (Q × E) interactions were detected for all root traits, and the contributions of these interactions ranged from 1.1% to 19.9%. Five co-localized QTLs controlling RFW and RDW, RFW/SFW, RDW/SDW and IDR, BRT and RN, RN, MRL and IDR were found. Four types of QTLs governing BRT and RN were classified by their detection in the upland and lowland conditions. Some common QTLs for root traits across different backgrounds were also revealed. These co-localized QTLs and common QTLs will facilitate marker-assisted selection for root traits in rice breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号