首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 91 毫秒
1.
刘纾曼 《钻采工艺》2012,35(1):93-96,14
文章对水合物分解、生成的主要动力学模型进行介绍,包括Kim-Bishnoi模型、Englezos模型、Jamaluddin模型,然后对CO2置换甲烷水合物CH4的Ota模型进行重点介绍。通过研究发现,这些模型的驱动力都可用逸度差表示,反应面积可用气液相界面面积或分解表面积表示,并可以写成一个水合物分解生成双过程统一的动力学模型。基于CO2置换水合物CH4是一个分解生成过程同时发生的自然统一,最后提出一个统一的动力学模型。  相似文献   

2.
目的 页岩储层中的裂缝系统对CH4产量和CO2封存量有着重要的影响,不同的储层地质特征有其对应的最优压裂方案。对鄂尔多斯盆地延长组页岩储层人工裂缝参数对CO2封存和CH4开采的影响进行分析。方法 基于鄂尔多斯盆地延长组页岩储层地质条件建立了页岩基质-裂缝双孔双渗均质模型,分析CO2增强页岩气开采技术(CO2-ESGR)中人工裂缝半长、裂缝宽度、裂缝高度、裂缝间距和裂缝数量对CO2封存量和CH4产量的影响。结果 CO2封存量和CH4产量与裂缝半长、裂缝宽度和裂缝高度呈正相关,其中裂缝宽度的影响最大,从5 mm增加到25 mm时,最多可使CO2封存量和CH4产量分别增加112.69%和87.11%。裂缝间距和裂缝数量增加可提高CO2封存量和CH4产量,但水平井长度相同时裂缝数量增加对CO...  相似文献   

3.
蒋洪  何愈歆  朱聪 《天然气工业》2011,31(9):112-115
采用膨胀机制冷工艺回收天然气中的乙烷时,膨胀机出口与脱甲烷塔顶部的温度较低,容易发生CO2冻堵,影响装置的正常运行。准确预测固体CO2的形成条件,有助于及时采取相应的措施调整凝液回收装置的操作工况,避免CO2冻堵。为此,分析了CO2固体的形成条件,根据相平衡原理,采用标准形式的Peng Robinson状态方程建立了液固平衡模型(LSE)和气固平衡模型(VSE),据此分别对CH4-CO22气相体系和CH4-CO22液相体系中的固体CO2形成温度进行了计算,并与用HYSYS软件预测的固体CO2形成温度进行了比较。结果表明:该计算模型的准确度较高,与实验数据的误差在2 ℃以内;而HYSYS软件预测的CH4-CO2气相体系的固体CO2形成温度较实验数据偏高1~5 ℃,预测的CH4-CO2液相体系的固体CO2形成温度较实验数据偏低1~6 ℃。  相似文献   

4.
CO2置换法作为一种集温室气体储存和天然气水合物开发于一体的方法引起了国内外学者的注意。通过检测置换过程中气相组分的变化情况,研究了压力和温度对CO2置换甲烷水合物置换率的影响。实验体系为纯水,置换反应时间为50h。实验结果表明,在CO2注入压力为2.5MPa时,当温度分别为273.15K、274.15K、275.65K、276.15K时,置换反应结束时气相中CH4的摩尔分数从置换反应开始时的1.56%分别达到39.74%、41.89%、45.45%、48.04%。在置换温度为275.65K时,当CO2注入压力分别为2.2MPa、2.5MPa、2.8MPa、3.1MPa时,置换率分别达到44.87%、45.45%、46.66%、47.21%。可见,置换温度与压力在一定范围内对置换率的影响是正向的,但影响程度不大。  相似文献   

5.
CO2置换法开发不同体系CH4水合物的实验   总被引:2,自引:1,他引:1  
CO2置换法引起了许多研究者的注意,该方法能够使CH4水合物开发和CO2气体的长期储存同时进行,是一种开发CH4水合物的新方法。在自行设计的反应装置中考察了3.25 MPa压力下,温度271.2 K、273.2 K和276.0 K时CO2气体置换十二烷基硫酸钠(SDS)体系和纯水体系CH4水合物中CH4的置换过程。实验表明:提高温度有利于置换反应的进行;SDS体系的置换速率比纯水体系的置换速率高。276.0 K、3.25 MPa时,SDS体系和纯水体系100 h的置换效率分别达到6.93% 和14.50%。由于水合物相中静态水的存在,置换反应过程中,CO2的消耗量与CH4水合物的分解量并不是1∶1的关系。基于实验结果,简单地分析了CO2置换CH4水合物中CH4的置换机理。  相似文献   

6.
CH4和CO2偶联直接合成乙酸是典型的绿色化学反应之一,但是也是一个热力学不利的过程,实现该反应是化学工程与技术的巨大挑战。CH4和CO2作为性质稳定的化合物,在温和条件下的活化与转化是催化领域的难题。综述了近年来国内外CH4和CO2偶联直接合成乙酸的研究进展,重点介绍了克服热力学不利的方法、反应机理以及催化剂研发等方面的工作,分析了构建高性能催化剂可行的方向,展望了CH4和CO2偶联直接合成乙酸的未来发展方向,并提出了相关建议。  相似文献   

7.
针对天然气水合物开采中CO2置换面临的渗透性差、置换效率低的问题,采用分子动力学模拟方法,将对水合物相具有强穿透能力的NH3作为促进剂,分别模拟了CO2单组分和CO2/NH3混合组分置换水合物过程。结果表明:在模拟设定的温度压力范围内,245 K和255 K条件下,NH3对CO2置换水合物过程起到正向促进作用,而当温度升高至265 K时,则会对置换过程起到抑制作用;温度相同时,升高压力可以提高置换效率,但不会改变NH3对置换过程的促进/抑制作用。该研究结果可为提高CO2置换法的置换效率提供新的思路。   相似文献   

8.
采用实验测量和模拟预测相结合的方法,通过构建详细的机理并开展零维动力学模拟,研究等离子体催化CH4/CO2重整过程中等离子体活性物质对表面反应动力学的强化效应。结果表明:等离子体与催化剂的协同对CH4和CO2的活化转化能力远强于纯等离子体;动力学模型对反应物的消耗和产物的生成具有较好的预测能力;活性自由基与吸附态物质之间的E-R反应具有较高的反应活性,能有效改变并促进表面反应路径,如等离子体强化的E-R反应CH3(s)+O→CH3O(s)的速率比相应的吸附态物质之间的L-H反应CH3(s)+O(s)→CH3O(s)+Ni(s)的速率高4个数量级;等离子体催化CH4/CO2重整过程中的表面反应路径主要以气相物质与表面吸附态物质之间的E-R反应为主。  相似文献   

9.
CO2-CH4混合气体水合物相平衡实验研究   总被引:6,自引:3,他引:3  
CO2置换开采天然气水合物是集温室气体储存和天然气水合物开采于一体的方法,已引起研究者的广泛关注。针对CO2置换法技术,本文利用建立的气体水合物相平衡测试装置,在273.7K~284.2K温度范围内测试了3组CO2-CH4混合气体的三相共存(H-V-LW)和较高四相点Q2(H-LW-LC-V)的相平衡特性。研究结果给出了实验温度范围内混合气体水合物随甲烷含量提高的相平衡压力特性,以及该混合气体水合物体系较高四相点Q2(H-LW-LC-V)稳定区的边界和混合气体水合物融化开始和融化结束时的Q2点。数据表明,混合气体中随着甲烷相对二氧化碳浓度的增加,Q2点随之增加,四相共存状态压力和温度范围也随着扩大。  相似文献   

10.
为降低传统工业企业生产中的碳排放,需要对生产装置进行碳捕集技术改造。文中介绍了膜分离捕集CO2、吸附反应分离捕集CO2、空气吸附捕集CO2及以有机胺溶剂、离子液体溶剂、低共熔溶剂为代表的溶剂吸收捕集CO2等主流CO2分离捕集技术研究及工业化应用现状。研究表明,通过功能化改性提高CO2捕集膜和吸附剂性能成为未来研发方向;降低复配溶剂能耗、控制离子液体制备成本成为当前CO2分离捕集技术工业应用的发展方向。  相似文献   

11.
天然气水合物储量巨大,是未来极具开发潜力的清洁能源。CO_2置换法兼具能源开采与温室气体封存的双重功效,但通常CO_2对CH_4的置换速率非常低。为此,结合抑制剂存在条件下CH_4水合物和CO_2水合物具有不同的热力学稳定性这一特点,提出并通过实验证实了一种可用于开采天然气水合物的新方法,它将CO_2置换法与注热力学抑制剂的工艺相结合,实现了CH_4水合物分解过程的加速。通过岩心驱替实验,对比考察了两类3种常见CH_4水合物热力学抑制剂(甲醇、氯化钠和氯化镁)的作用效果。实验结果表明:在甲醇溶液作用下,CH_4水合物分解速率高达0.011 94 mol/h,远高于电解质盐溶液的作用效果(分别为0.000 86 mol/h和0.001 41 mol/h)。选择甲醇溶液作为水合物分解加速剂,通过前期注入甲醇溶液段塞、后期连续注入CO_2的方式,使得CH_4水合物分解率超过92%,且实现了CO_2气体以水合物形式的封存固定,最终CO_2水合物的生成量占到初始甲烷水合物总量的16%~27%。  相似文献   

12.
陈欢庆  胡永乐  田昌炳 《油田化学》2012,29(1):116-121,127
详细介绍了CO2驱油与埋存研究的现状。目前CO2驱油在国外已取得较好的经济效益,在国内正在进行矿场先导试验。而CO2埋存在国内外均处于探索阶段。CO2驱油与埋存研究中存在的问题主要包括提高采收率方面的扩大波及体积等关键问题、CO2埋存介质和方法的选择、CO2驱油对地层的伤害、CO2驱油与埋存的气源问题、CO2驱油与埋存产业协调和整体规划5大方面。指出了该项研究的发展趋势。  相似文献   

13.
以H_4L为配体,与金属离子Zr~(4+)自组装得到棒状晶体Zr基金属有机框架材料(ZrMOFs),并借助X射线单晶衍射、N_2吸附脱附、X射线粉末衍射、热重等对其结构进行表征,利用气体吸附仪测量了CH_4和N_2的吸附等温线,采用克-克(Clausius-Clapeyron)方程计算CH_4的吸附热,并运用Ideal Adsorbed Solution Theory(IAST)理论来计算CH_4/N_2的分离因子(SCH_4/N_2)。结果表明:在273K、0.1MPa时,晶体Zr-MOFs对CH_4有较好的吸附效果,吸附量为8.2cm3/g,对CH_4/N_2的选择性分离因子(S)为6.3,且具有较好的分离效果;对吸附热力学的研究表明,CH_4的吸附热在20kJ/mol左右,相对分子筛类吸附剂吸附热较小,易于吸附剂的再生。  相似文献   

14.
页岩对CH4的解吸、吸附作用直接影响页岩气渗流规律,进而影响页岩气井的开采效率。为真实反映储层页岩的吸附/解吸特性,选用相对颗粒更能保持岩层原始地质结构的Ф50 mm×100 mm页岩岩心试样,并在恒定轴压和围压条件下,通过恒温水浴改变试验温度,开展了不同温度、不同储层压力作用下页岩吸附/解吸试验。试验结果表明:①由于页岩原始结构的微裂隙的各向异性,岩心吸附曲线表现出“阶梯状”和“负吸附”特征;②颗粒试样比岩心样品的吸附量更高,并且吸附量随围压变化更均匀,而岩心吸附过程压力与吸附量相关性差,并在极限压力点出现突增现象;③页岩岩心吸附CH4以微孔和微裂隙填充为主,其次是大孔的单分子层吸附;④吸附势理论模型在描述岩心的吸附和解吸过程比Langmuir模型更合理。  相似文献   

15.
由于深井试气作业存在高温、高压的风险,且高含CO2气、凝析气,风险高于一般油气井试油作业,对入井工具有着特殊要求,在管串设计方面考虑因素较多,工艺也相对复杂,为此分析和总结前期试油测试施工中遇到的问题,对特殊气体的试气工作具有指导意义。  相似文献   

16.
采用深冷工艺回收天然气中的乙烷时,脱甲烷塔塔顶及冷箱处的温度较低,容易发生CO_2冻堵。研究固体CO_2在CH_4-CO_2二元体系中的形成规律,有助于优化深冷分离工艺,避免CO_2冻堵,同时降低冷能消耗。修正了纯组分CO_2的饱和蒸气压的通用关联式,以预测二元气相体系中固体CO_2的形成温度,并与陈赓良-朱利凯模型关联式计算、HYSYS软件计算及Aspen Plus软件计算的CO_2固体形成温度进行了比较。结果表明,修正后的计算模型准确度较高,与Agrawal的实验数据的平均偏差在2℃以内。同时,根据Kurata实验数据拟合出CH_4-CO_2二元液相体系中CO_2固体形成温度关联式,并与文献经验公式、HYSYS软件计算及Aspen Plus软件计算的CO_2固体形成温度进行了比较。结果表明,该计算模型与实验数据吻合度非常高,与Kurata的实验数据的平均偏差在1℃以内,且具有广泛的通用性。  相似文献   

17.
天然气经过脱碳处理后剩余的CO2或电厂回收的CO2中还含有饱和水,为了阻止水合物的形成,防止两相流的出现和CO2溶于水后对管道、设备的腐蚀,在管输之前需要对主体为CO2的混合气体进行脱水处理。运用Aspen HYSYS模拟TEG脱除CO2中水分的过程。在一定气体流量下,通过改变吸收塔工作压力、温度、塔板数、再生塔的重沸器温度和TEG循环量,对影响CO2脱水的因素进行了研究。结果表明,在处理酸性湿气气体流量为46.64×104 m3/d(20℃,101.325kPa)的条件下,采用吸收塔工作压力为2 000kPa,工作温度为常温,吸收塔塔板数为8~10块,再生塔重沸器温度为200℃,TEG循环流率为1.1kg/kg(脱除水量)的工艺优化参数,可使处理后的混合气体含水量满足管输要求。  相似文献   

18.
CH4/CO2一步合成C2烃研究进展   总被引:3,自引:2,他引:1  
《天然气化工》2001,26(5):58-61
介绍了CH4/CO2一步合成C2烃的两条主要途径化学催化法和等离子体活化法.化学催化法主要采用金属氧化物催化剂及负载型金属氧化物催化剂,后者的催化活性明显高于前者,是今后化学催化法的研究方向.冷等离子体是十分有效的自由基引发方式,在此反应中的应用获得了比化学催化法更高的C2烃收率.CH4/CO2一步制C2烃是一条合成路线简单、原料廉价易得的崭新合成路线,有望成为CH4/CO2合成C2烃的重要发展方向.  相似文献   

19.
优选出的CO2预冷双氮膨胀制冷液化工艺提高了液化效率,增大了天然气液化处理能力,但其海上作业适应性还有待考察。为此,通过流程模拟和火用分析,对CO2预冷、丙烷预冷和混合冷剂双氮膨胀制冷液化工艺流程进行了对比,并从热力学角度出发,分析了CO2预冷双氮膨胀制冷液化工艺对原料气物性(温度、压力、组成)、流程操作参数(CO2节流后的温度)以及CO2纯度的敏感性,对其海上适应性做出了评价。结论认为:该工艺可适用于海况恶劣的环境,其对原料气温度、压力和组成变化不敏感,适合于中到大规模的天然气液化生产。最后,为保证流程的安全、高效运行,提出了该工艺应用中需注意的3个问题:①压缩机水冷器温度应低于31.1 ℃;②CO2预冷温度应超过-53 ℃;③CO2杂质含量应控制在1%以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号