首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
为提高核主泵在全工况点的数值模拟精度,研究了数值模拟过程中近壁面网格尺度、湍流模型、流动状态3种因素对计算精度的影响。结果表明,在定常状态下,重整化群(RNG) k-ε湍流模型和标准壁面函数法在近壁面网格尺度(y+)为50左右时具有较高的计算精度,并且其计算精度高于RNG k-ε增强壁面函数法、低雷诺数k-ε和剪切应力传输(SST)k-ω这3种湍流模型的计算精度,但上述不同网格尺度和湍流模型的计算结果均存在较大的计算误差;采用非定常计算时的计算精度明显高于定常计算,能够反映出扬程曲线在关死点附近的驼峰现象,效率的计算精度也有一定改善,更适合于对核主泵进行性能预测。   相似文献   

2.
采用CFD方法对燃料组件进行过冷流动沸腾数值模拟研究是反应堆热工水力分析的一项重要内容。本研究使用STAR CCM+基于欧拉双流体模型结合壁面沸腾模型对管内过冷流动沸腾进行数值模拟,得到了壁面温度、主流温度及空泡份额的分布。基于实验结果对网格模型、湍流模型、壁面沸腾模型及相间作用力模型的参数设置进行了敏感性分析。研究结果表明,对于欧拉双流体模型,并非网格量越多结果越准确,加热面第1层网格的高度对结果影响显著。湍流模型和曳力模型对计算结果影响较小,非曳力中的湍流耗散力及升力对结果影响较大。Li Quan或Hibiki Ishii汽化核心密度模型与Kocamustafaogullari气泡脱离直径模型组合对壁面温度及空泡份额的计算较准确。本研究可为反应堆燃料组件内过冷流动沸腾数值模拟提供参考依据。  相似文献   

3.
采用高雷诺数(Re)k-ε模型与壁面函数法对液态金属钠在环管中湍流流动传热特性进行计算,并与实验结果进行比较,结果表明计算值与实验结果符合较好。应用该方法研究湍流程度、加热条件、几何条件等因素对液态金属钠在环管中湍流传热特性的影响。研究表明,湍流程度对传热的影响主要集中在流道前半段,后半段分子扩散对传热的影响逐渐凸现出来,使不同湍流程度下传热特性的区别逐渐缩小;初始温度与加热热流密度对传热特性无明显影响;环管间隙增大,湍流传热效果增强,同等间隙时管径变化对传热特性无明显影响。  相似文献   

4.
CFX中湍流模型用于分析超临界水传热的适用性评价   总被引:1,自引:1,他引:0  
通过两组典型实验数据,对商业软件CFX的12种湍流模型用于模拟超临界水竖直向上流动传热的性能进行评价。研究结果表明:强迫对流时,BSL代数应力模型与实验结果符合最好,但各模型间差异均不大;混合对流时,基于壁面函数的ε类型湍流模型不能模拟传热恶化趋势,自动壁面处理的ω类型湍流模型能模拟出传热恶化的趋势,但各模型预测结果和实验结果相差较大。评价结果表明近壁面的处理方式对模拟结果影响很大。此外,基于湍流普朗特数模拟湍流热流密度及未考虑密度脉动对传热的影响均是导致不能正确模拟超临界水传热行为的因素,建议对湍流模型进行改进。  相似文献   

5.
张鹏 《原子能科学技术》2012,46(Z1):225-230
基于两流体模型框架,使用雷诺平均N-S方程(RANS)和大涡模拟(LES)两种湍流模型对竖直圆管内的绝热离散气 液两相流动进行数值模拟研究。计算结果表明,采用恰当的相间相互作用模型,两种模型的时均模拟结果同实验均符合较好。气泡的壁面聚集现象被准确预测,速度场预测也较为准确。与基于RANS的SST湍流模型相比,采用WALE亚网格应力的大涡模拟得到的结果同实验符合得更好,且大涡模拟可给出流动的瞬态细节。  相似文献   

6.
下降液膜蒸发换热是CAP1400型反应堆非能动安全壳采用的重要换热机理,准确计算下降液膜蒸发换热量对非能动安全壳换热性能的评价有至关重要的影响。本文利用ANSYS FLUENT软件二次开发,实现了两种下降液膜蒸发换热模型的构建,并将两种模型计算结果与实验结果进行了对比分析。计算结果表明:两种模型均可较为准确地计算壁面下降液膜的蒸发换热系数;模型1的计算结果更加可靠,但在靠近壁面处需非常精细的网格;模型2在壁面处可使用较粗网格,但计算结果对对流换热系数的依赖较大。  相似文献   

7.
为研究计算流体力学(CFD)方法预测棒束通道内流场分布的准确性,基于网格敏感性分析所确定的网格方案,采用标准k-ε模型(SKE)、可实现k-ε模型(RKE)、标准k-ω模型(SKW)和剪切应力传输模型(SST模型)对单相棒束流动进行模拟,并将横向速度与轴向速度与试验结果进行量化比较。结果表明:4种湍流模型均能较好地预测棒束通道内的流场分布,其中SKE与RKE的在横向速度预测上相对偏差较小,为19.6%;对于近格架区域的横向流场分析,SKE模拟较优,反之RKE模拟较优;对于轴向速度的预测,SKE的相对偏差最小为4.9%;4种湍流模型均低估均方根(RMS)速度,但能够预测棒束通道内RMS速度的分布规律,近格架区域采用RKE,反之SST较优。本文的计算结果可为单相棒束流动CFD分析的最佳实践导则建立提供参考。   相似文献   

8.
采用高Re k-ε模型与壁面函数法对液态金属钠在圆管中湍流传热特性进行数值计算,并与文献实验结果进行了比较,计算值与实验结果符合较好。同时应用该方法研究了湍流程度和加热条件对液态钠传热特性的影响。结果表明:湍流程度对传热的影响主要集中在流道前半段,后半段分子扩散对传热的影响逐渐凸现出来,使不同湍流程度流体传热特性的区别逐渐缩小。初始温度与热流密度对传热特性无明显影响。  相似文献   

9.
为了提高RPI(Rensselaer Polytechnic Institute)欠热沸腾模型在棒束通道数值计算中的准确性并对模型参数的选取提供参考,本文基于FT-6a实验详细分析了RPI模型中3个重要子模型(气泡脱离壁面直径、气泡成核面密度及气泡脱离频率)及两个重要相间非曳力模型(升力及湍流耗散力)对气泡轴向与径向分布及壁面过热度计算结果的影响。分析结果表明:RPI子模型对气泡份额及壁面过热度计算结果的影响较为复杂,不能通过对比单个参数的实验测量值来验证计算的可靠性,应综合对比多个实验值,以确定各子模型的最佳模型参数;非曳力对棒束通道中气泡的径向分布计算结果有明显影响,升力有抑制气泡离开加热壁面的作用,湍流耗散力则有促进气泡向主流区运动的作用。  相似文献   

10.
采用计算流体力学方法,首先利用THAI HM-2实验对CFX分析模型的适用性进行验证,通过与实验数据的比对,表明计算结果与实验数据基本吻合,从而验证选用的模型适合对安全壳模拟装置氢气分布特性的分析。之后,建立待研究中等规模安全壳模型实验装置的三维几何模型和网格模型,采用基准工况+单因素对比的方式,分别模拟湍流浮力射流中心喷射和近壁面喷射工况以及考虑蒸汽壁面冷凝情况下安全壳模型内的氦气(氢气替代工质)流动扩散分布,讨论喷射位置因素、壁面蒸汽凝结效应对氦气分布的影响。分析结果表明,喷射位置对氦气分布的影响主要体现在壁面引流现象上,即氦气流更倾向于沿着安全壳壁面进行流动和扩散;而与安全壳壁面的换热和蒸汽的冷凝会进一步促进大空间自然对流的建立,从而较为显著地提高氦气在安全壳内的扩散和混合效果。  相似文献   

11.
建立了简化的C型换热器管外流体CFD分析模型,模拟了反应堆安全壳内置换料水箱(IRWST)中典型气液两相自然循环特性。首先用公开发表文献中的试验数据对计算方法进行校验,计算中采用的湍流模型、壁面沸腾模型等能较好地捕捉主流流体升温特性、两相自然循环特性。结果表明:C型换热器增加了管外流体流场分布的不均匀性,提高了冷、热流体间的搅混强度,有助于降低管外流体温度差,增加大容积水池内的自然循环能力;但由于壁面对气泡的阻滞作用,换热器弯管及水平管局部区域空泡份额最大,发生了气泡聚集。计算结果可为非能动余热排出换热器的设计提供支持。  相似文献   

12.
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system.CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler–Euler two fluid model with the free surface option was applied on grids of minimum 4 × 105 control volumes. The turbulence was modelled separately for each phase using the kω-based shear stress transport (SST) turbulence model. The results compare very well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow.  相似文献   

13.
A modified k-ε model is proposed for two-phase turbulent jets which takes into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-phase averaged equation for the turbulent kinetic energy of the continuous phase, a constitutive relation is proposed for the additional dissipation of turbulence. The additional dissipation effect was modeled using a transfer function, which relates the fluctuations of the dispersed phase with the fluctuations of the continuous phase, integrating over the turbulence energy spectrum. A further improvement to the theory considers that dissipation only occurs when the eddies are bigger than the particles. Therefore a cutoff frequency is proposed and for big particles or bubbles dissipation may become negligible. The model is inserted in an Eulerian computational fluid dynamics code. The results are compared with data available in the literature for an air-particle jet. The results agree with the data within the range of experimental error. Comparisons were also made without including dissipation effects and it was concluded that the dissipation due to eddy-particle interactions is significant and should be included in a general two-phase k-ε model.  相似文献   

14.
Effect of flow-induced vibration on local flow parameters of two-phase flow   总被引:1,自引:0,他引:1  
A preliminary study was conducted experimentally in order to investigate the effect of flow-induced vibration on flow structure in two-phase flow. Two kinds of experiments were performed, namely ‘reference’ (no vibration) and ‘vibration’ experiments. In the reference experiment, an experimental loop was fixed tightly by three structural supports, whereas the supports were loosen a little in the vibration experiment. In the vibration experiment vibration was induced by flowing two-phase mixture in the loop. For relatively low superficial liquid velocity, flow-induced vibration promoted the bubble coalescence but liquid turbulence energy enhanced by the vibration might not be enough to break up the bubble. This leaded to the marked increase of Sauter mean diameter, and the marked decrease of interfacial area concentration. Accordingly, flow-induced vibration changed the void fraction profile from ‘wall peak’ to ‘core peak’ or ‘transition’, which increased distribution parameter in the drift-flux model. For high superficial liquid velocity, shear-induced liquid turbulence generated by two-phase flow itself might be dominant for liquid turbulence enhanced by flow-induced vibration. Therefore, the effect of flow-induced vibration on local flow parameters was not marked as compared with that for low superficial liquid velocity. Since it is anticipated that flow structure change due to flow-induced vibration would affect the interfacial area concentration, namely interfacial transfer term, further study may be needed under the condition of controlled flow-induced vibration.  相似文献   

15.
This paper presents the CFD modeling methodology and validation for steady-state, normal operation in a PWR fuel assembly. This work is part of a program that is developing a CFD methodology for modeling and predicting single-phase and two-phase flow conditions downstream of structural grids that have mixing devices. The purpose of the mixing devices (mixing vanes in this case) is to increase turbulence and improve heat transfer characteristics of the fuel assembly. The detailed CFD modeling methodology for single-phase flow conditions in PWR fuel assemblies was developed using the STAR-CD CFD code. This methodology includes the details of the computational mesh, the turbulence model used, and the boundary conditions applied to the model. The methodology was developed by benchmarking CFD results versus small-scale experiments. The experiments use PIV to measure the lateral flow field downstream of the grid, and thermal testing to determine the heat transfer characteristics of the rods downstream of the grid. The CFD results and experimental data presented in the paper provide validation of the single-phase flow modeling methodology. Two-phase flow CFD models are being developed to investigate two-phase conditions in PWR fuel assemblies, and these can be presented at a future CFD Workshop.  相似文献   

16.
A new turbulence modelling approach (Very-Large Eddy Simulation; V-LES) is developed and compared to conventional RANS and LES for a flow across a tube bundle. The method, which belongs to the large-scale simulation category, represents a good compromise between efficiency and precision, and may thus be used for industrial problems for which LES remains computationally expensive under high to very-high Reynolds number flow conditions. It can also be used for gas-liquid two-phase flows such as pressurized thermal shocks. The method is a sort of blend between U-RANS and LES, in that it resolves very large structures - way larger than the grid size - and models all subscale of turbulence using a two-equation model, by reference to RANS. The original model is shown here to share the same characteristics as the Detached Eddy Simulation (DES) approach, in that when the filter width is smaller than the wall-distance at which viscous effects are negligible (fμ = 1), the fixed filter width is replaced by the wall distance. First conclusions to be drawn from its extension here is that the flow must be resolved in three-dimensions, under transient conditions, with refined grids. Sensitivity to various computational parameters has been addressed: grid, filter width, domain size, and inflow conditions. This modelling strategy is proved to provide the flow unsteadiness in three-dimensions, while saving computational cost compared to LES. The method is computationally efficient (it can be applied using an implicit solver which permits a higher CFL than with LES; typically 1 versus 0.1), and numerically robust. The computational cost decreases with increasing filter width, though at the expenses of the quality of the results.  相似文献   

17.
To enhance the multi-dimensional analysis capability for a subcooled boiling two-phase flow, the one-group interfacial area transport equation was improved with a source term for the bubble lift-off. It included the bubble lift-off diameter model and the lift-off frequency reduction factor model. The bubble lift-off diameter model took into account the bubble's sliding on a heated wall after its departure from a nucleate site, and the lift-off frequency reduction factor was derived by considering the coalescences of the sliding bubbles. To implement the model, EAGLE (elaborated analysis of gas-liquid evolution) code was developed for a multi-dimensional analysis of two-phase flow. The developed model and EAGLE code were validated with the experimental data of SUBO (subcooled boiling) and SNU (Seoul National University) test, where the subcooled boiling phenomena in a vertical annulus channel were observed. Locally measured two-phase flow parameters included a void fraction, interfacial area concentration, and bubble velocity. The results of the computational analysis revealed that the interfacial area transport equation with the bubble lift-off model showed a good agreement with the experimental results of SUBO and SNU. It demonstrates that the source term for the wall nucleation by considering a bubble sliding and lift-off mechanism enhanced the prediction capability for the multi-dimensional behavior of void fraction or interfacial area concentration in the subcooled boiling flow. From the point of view of the bubble velocity, the modeling of an increased turbulence induced by boiling bubbles at the heated wall enhanced the prediction capability of the code.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号