首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vitro blood compatibility of poly (hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) was evaluated in comparison with poly (L-lactic acid) (PLLA) by a haemolysis assay, in vitro platelet adhesion test and coagulation measurements including plasma recalcification time (PRT), plasma prothrombin time (PT) and kinetic clotting time. The results showed that PHBHHx exhibited better blood compatibility than PLLA. Furthermore, PHBHHx film was modified by NaOH treatment to improve the surface hydrophilic property and the influence of the surface modification on the blood compatibility was investigated. Surface properties including hydrophilic property, surface appearance and functional groups were characterized by water contact angle measurement, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that the hydrophilic property of PHBHHx film was obviously improved by the NaOH treatment. It was also shown that the NaOH treatment could significantly enhance the blood compatibility of PHBHHx by prolonging PRT, PT, and kinetic clotting time and decreasing platelet activation. It is thought that the improvement in the hydrophilic property mainly contributes to the enhancement of blood compatibility.  相似文献   

2.
The copolymers poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) are being intensely studied as a tissue engineering substrate. It is known that poly 3-hydroxybutyric acids (PHBs) and their copolymers are quite hydrophobic polyesters. Plasma-surface modification is an effective and economical surface treatment technique for many materials and of growing interest in biomedical engineering. In this study we investigate the advantages of oxygen and nitrogen plasma treatment to modify the PHBV surface to enable the acceleration of Vero cell adhesion and proliferation. PHBV was dissolved in methylene chloride at room temperature. The PHBV membranes were modified by oxygen or nitrogen-plasma treatments using a plasma generator. The membranes were sterilized by UV irradiation for 30 min and placed in 96-well plates. Vero cells were seeded onto the membranes and their proliferation onto the matrices was also determined by cytotoxicity and cell adhesion assay. After 2, 24, 48 and 120 h of incubation, growth of fibroblasts on matrices was observed by scanning electron microscopy (SEM). The analyses of the membranes indicated that the plasma treatment decreased the contact angle and increased the surface roughness; it also changed surface morphology, and consequently, enhanced the hydrophilic behavior of PHBV polymers. SEM analysis of Vero cells adhered to PHBV treated by plasma showed that the modified surface had allowed better cell attachment, spreading and growth than the untreated membrane. This combination of surface treatment and polymer chemistry is a valuable guide to prepare an appropriate surface for tissue engineering application.  相似文献   

3.
Poly(ethylene glycol) (PEG) was ‘polymerized’ onto poly(ethylene terephthalate) (PET) surface by radio frequency (RF) plasma polymerization of PEG (average molecular weight 200 Da) at a monomer vapour partial pressure of 10 Pa. Thin films strongly adherent onto PET could be produced by this method. The modified surface was characterized by infra red (IR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), cross-cut test, contact angle measurements and static platelet adhesion studies. The modified surface, believed to be extensively cross-linked, however showed all the chemical characteristics of PEG. The surface was found to be highly hydrophilic as evidenced by an interfacial free energy of about 0.7 dynes/cm. AFM studies showed that the surface of the modified PET became smooth by the plasma polymerized deposition. Static platelet adhesion studies using platelet rich plasma (PRP) showed considerably reduced adhesion of platelets onto the modified surface by SEM. Plasma ‘polymerization’ of a polymer such as PEG onto substrates may be a novel and interesting strategy to prepare PEG-like surfaces on a variety of substrates since the technique allows the formation of thin, pin-hole free, strongly adherent films on a variety of substrates.  相似文献   

4.
利用胶原蛋白对聚乳酸进行了化学改性,合成得到胶原蛋白改性聚乳酸。采用红外光谱、FITC标记技术、茚三酮显色法等方法对其结构进行了初步表征。结果表明,采用该合成方法可以将胶原蛋白引入聚乳酸中;测定了胶原蛋白改性聚乳酸的水接触角和吸水率,结果表明胶原蛋白改性聚乳酸的亲水性明显高于聚乳酸。  相似文献   

5.
Lecithin constitutes a natural mixture of phospholipids and neutral lipids and plays critical roles in cellular membrane structure and cellular signaling. In this study, lecithin was blended with poly (L-lactic acid) (PLLA) for modifying the surface of PLLA because it might obtain appropriate hydrophilicity and biocompatibility. The modified PLLA films were manufactured using conventional solvent-casting technique. The hydrophilicity clearly increased with an increase of lecithin content in the polymer blends, as determined by measuring the water contact angle (WCA). The cytocompatibility and any potential cytotoxic effects were studied over 7 days by seeding mesenchymal stem cells (MSCs) on the films of PLLA containing 0–15% lecithin (wt.%), in comparison with tissue culture plates (TCPs). Cell viability and proliferation were assessed using WST-8, lactate dehydrogenase (LDH) and cell morphology was studied by toluidine blue and propidium iodide staining. This results obtained above suggested that 5%lecithin-containing PLLA films could possess the optimal hydrophilicity, higher adhesion and proliferation of MSCs for a prolonged period and did not demonstrate any significant toxic effects to cells. The study showed that the hydrophilicity and biocompatibility of the modified PLLA were markedly improved by directly introducing lecithin into the polymer without the use of multiple synthetic steps. The information obtained should be useful for future research in vascular tissue engineering (VTE).  相似文献   

6.
Graphite nanosheets (GNSs) and poly(hydroxybutyrate‐co ‐hydroxyvalerate) (PHBV) nanocomposites were prepared by solution casting method. This study aimed to evaluate the effects of previously phototreatment with ultraviolet (UV) radiation on the biotreatment with Paecilomyces variotti of neat PHBV and PHBV /GNS nanocomposites. Some samples of PHBV film were submitted only to biotreatment with P. variotti during 120 days; other samples were subjected to phototreatment (UV radiation) for 30 h followed by biodegradation assessment with P. variotti for a period of 120 days. The effects of biotreatments on thermal properties were studied through differential scanning calorimetry. The PHBV films were monitored by weight changes as a function of time. Also, their surfaces were examined after the tests using scanning electron microscopy, contact angle and roughness measurements. The level of oxidation was recorded by means of carbonyl index evaluation by Fourier transformed infrared spectroscopy spectroscopy. The phototreatment of PHBV films influenced the process of adhesion and colonisation by P. variotti on the surface of the films, and enhanced morphological and structural changes.Inspec keywords: ultraviolet radiation effects, nanocomposites, graphite, polymer blends, casting, nanofabrication, biodegradable materials, scanning electron microscopy, differential scanning calorimetry, contact angle, surface roughness, oxidation, Fourier transform infrared spectra, adhesionOther keywords: photodegradation, biotreatment, Paecilomyces variotti, nanocomposites, graphite nanosheets, poly(hydroxybutyrate‐co‐hydroxyvalerate), solution casting, ultraviolet radiation, biodegradation assessment, thermal properties, differential scanning calorimetry, scanning electron microscopy, contact angle, roughness measurements, oxidation, carbonyl index evaluation, Fourier transformed infrared spectroscopy, adhesion, colonisation, morphological change, structural change, time 120 d, time 30 h, C  相似文献   

7.
The main aims of this work were to study the effect of surface modifications on sisal fiber properties as well as on fiber/poly (lactic acid) (PLA) interface adhesion. For this purpose, alkali, silane and combination of both treatments were applied to sisal fiber. The effects of treatments on fiber thermal stability, fiber wettability, morphology, tensile properties and on fiber/PLA interfacial shear strength (IFSS) were studied. After treatments IFSS values improved at least 120%, however, tensile strength of sisal fibers decreased. Alkali treatment removed some non-cellulosic components (hemicelluloses, lignin) as confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The removal of non-cellulosic materials led to fibrillated and rough morphology as observed by optical microscopy (OM). FTIR spectrum of silane treated fibers showed a band related to silane amino group and contact angle measurements confirmed that fibers became more hydrophobic. All treatments used improved fiber/PLA adhesion.  相似文献   

8.
The hydrophobicity of the poly(l-lactide) (PLLA) surface was modified by incorporating hydroxyapatite (HAp) nanocrystalline particles during the electrospinning process for the engineered scaffold applications. The HAp nanocrystals were synthesized with 30 nm in diameter and 100–120 nm in length, which subsequently formed micrometer-sized agglomerates in the range of 2.5 μm. The synthesized HAp agglomerates were electrospun in the PLLA solution, and the HAp nanocrystals were desirably exposed on the surface of the electrospun PLLA fibers to give higher surface energy and lower contact angles with water. The surface-exposed hydrophilic HAp nanocrystals substantially increased the precipitation of various salts on the HAp/PLLA fiber surfaces in a buffer solution due to the hydrophilic nature and ionic affinity of HAp. Finally, the developed HAp/PLLA fibers desirably sustained the fibrous structural integrity during the accelerated-aging test in water, which was not the case with the pristine PLLA fibers.  相似文献   

9.
Electrospun nanofiber mats can display impressive performance as an ideal wound dressing. In this study, poly(l-lactide)(PLLA)/zein nanofiber mats loaded with Rana chensinensis skin peptides (RCSPs) were successfully produced by two different electrospinning techniques, blend and coaxial, with the goal of developing a wound dressing material. The nanofiber mats were investigated by environmental scanning electron microscope (ESEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), water contact angle, mechanical tests and cell viability. The resulting nanofiber mats exhibited smooth surfaces, tiny diameters and different cross-sectional shapes from pure PLLA and zein nanofibers. The FTIR result showed that PLLA, zein and RCSPs were well dispersed, without chemical interactions. Compared with coaxial nanofiber mats, blending zein-RCSPs with PLLA enhanced hydrophilicity but decreased mechanical properties. Adding RCSPs into the electrospun nanofibers significantly improved the mechanical properties of the mats. Cell viability studies with human foreskin fibroblasts demonstrated that cell growth on PLLA/zein-RCSPs nanofiber mats was significantly higher than that on PLLA/zein nanofiber mats. The results indicate that nanofiber mats containing RCSPs are potential candidates for wound dressing.  相似文献   

10.
Poly(N-isopropylacrylamide), PNIPAAm, was grafted on the surface of poly(ethylene terephthalate), PET, and films previously modified with poly(glycidyl methacrylate), PGMA, and photo-oxidized, using atom transfer radical polymerization, ATRP, techniques. The grafting of NIPAAm occurs in the oxidized PET surface in the same way as in the surfaces modified with PGMA. The film's surface was analyzed by contact angle measurement, roughness mean square (RMS), and determined by atomic force microscopy, AFM and ATR–FTIR.  相似文献   

11.
Cellulose nanofibrils (CNFs) were blended with poly(l-lactic acid) (PLLA) to produce CNFs/PLLA composite solid foams. The dispersed CNFs’ phase was partially embedded in the PLLA matrix. The CNFs not only reduced the water contact angle of the composite, but also induced the formation of hydroxyapatite (HA) on the walls of its inner pores. After incubation for 7 days in 3× simulated body fluid, a large number of HA particles were formed throughout the CNFs/PLLA composite foams. HA particles have diameters ranging from 200 nm to 2 μm and a Ca/P ratio of 1.42. The spatial distribution of calcium and phosphorus elements was uniform. A porosity of approximately 92 % was achieved after mineralization of the CNFs/PLLA composite foams. The mass of HA grown over CNFs/PLLA foams increased faster than in the case of PLLA foams. The ternary polymeric foams have potential applications in tissue engineering.  相似文献   

12.
Natural or synthetic materials may be used to aid tissue repair of fracture or pathologies where there has been a loss of bone mass. Polymeric materials have been widely studied, aiming at their use in orthopaedics and aesthetic plastic surgery. Polymeric biodegradable blends formed from two or more kinds of polymers could present faster degradation rate than homopolymers. The purpose of this work was to compare the biological response of two biomaterials: poly(L: -lactic acid)PLLA and poly(L: -lactic acid)PLLA/poly(ethylene oxide)PEO blend. Forty four-week-old rats were divided into two groups of 20 animals, of which one group received PLLA and the other PLLA/PEO implants. In each of the animals, one of the biomaterials was implanted in the proximal epiphysis of the right tibia. Each group was divided into subgroups of 5 animals, and sacrificed 2, 4, 8 and 16 weeks after surgery, respectively. Samples were then processed for analysis by light microscopy. Newly formed bone was found around both PLLA and PLLA/PEO implants. PLLA/PEO blends had a porous morphology after immersion in a buffer solution and in vivo implantation. The proportion 50/50 PLLA/PEO blend was adequate to promote this porous morphology, which resulted in gradual bone tissue growth into the implant.  相似文献   

13.
《Materials Letters》2005,59(28):3558-3562
In this study, a new method of preparing porous ultra-fine fibers via photo-crosslinking was developed. Ultra-fine poly(vinyl cinnamate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PVCi/PHBV) blend fibers were electrospun and then the PVCi was photo-crosslinked by UV irradiation. PVCi and PHBV were immiscible and the phase separation proceeded during the electrospinning process. After the photo-crosslinking of PVCi, PHBV was extracted from the blend fibers with chloroform. The average pore sizes in the remaining ultra-fine PVCi fibers were increased with increasing the content of PHBV in the ultra-fine PVCi/PHBV fibers.  相似文献   

14.
Novel green composites were successfully fabricated by incorporating agro-residues as corn straw (CS), soy stalk (SS) and wheat straw (WS) into the bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, by melt mixing technique. Effects of these biomass fibers on mechanical, thermal, and dynamic mechanical properties of PHBV were investigated. A comparative study of biomass fiber-reinforced polypropylene composite systems was performed. The tensile and storage modulus of PHBV was improved by maximum 256% and 308% with the reinforcement of 30 wt.% agricultural byproducts to it. For equal amounts of (30%) biomass fibers, tensile and flexural modulii of PHBV composites showed much higher values than corresponding PP composites. Alkali treatment of wheat straw fibers enhanced strain @ break and impact strength of PHBV composites by ∼35%, hardly increasing strength and modulus compared to their untreated counterparts. DMA studies indicated better interfacial interaction of PHBV with the biomass fibers than PP. Scanning electron microscopy (SEM), used to study the morphology of composites, also revealed similar outcomes.  相似文献   

15.
Porous scaffolds play important roles in tissue engineering. Biodegradable synthetic polymers, such as poly(l-lactic acid) (PLLA), frequently are used in the preparation of porous scaffolds. Pretreating the surface of a PLLA porous scaffold is required to increase its wettability for smooth cell seeding due to the hydrophobic property of the scaffold's surface. In this study, a simple coating method was used to modify the surface of the PLLA sponges. The coating method included three steps: filling the PLLA sponge pores with collagen aqueous solution, centrifuging to remove excess collagen, and, finally, freeze-drying. Compared with the uncoated PLLA sponge, the collagen-coated PLLA sponge demonstrated both improved wettability and high water absorption. Cells were smoothly seeded in the collagen-coated PLLA sponges by dropping a cell suspension solution onto the sponges. Cells adhered to the collagen-coated sponge and were distributed homogeneously throughout the collagen-coated PLLA sponge.  相似文献   

16.
The biomimetic apatite coating process was adopted to modify poly(L-lactide) (PLLA) surfaces with osteoblasts-like cell compatibility. The apatite coating was formed on the pre-hydrolyzed PLLA film and scaffold surfaces by incubating in simulated body fluid (SBF). Scanning electron microscopy and energy dispersive X-ray analyzer were utilized to characterize the composition and the structure of the apatite coating. The cytocompatibility of the modified PLLA films was investigated by testing osteoblast-like attachment, proliferation, alkaline phosphatase (ALP) activity, and cell cycle. Subsequently, the modified PLLA scaffolds were co-cultured with the osteoblasts-like in vitro and subcutaneously implanted into nude mice. The experimental results showed that the formed apatite had a nano-sized particle and matrix configuration. The surface modification of PLLA with apatite coating significantly promoted osteoblast-like compatibility. After a four-week culture in vivo, no significant inflammatory signs were observed in the implanted regions and osteoblast-like congeries with bone-like structure began to form in the scaffolds. The positive results of this study suggest a good way to produce desirable PLLA biomaterials for bone tissue engineering.  相似文献   

17.
The influence of poly(dicyclohexylitaconate) (PDCHI) content, on the crystallization kinetics, thermal properties, and hydrolytic degradation of poly(hydroxybutyrate-co-hydroxyvalerate), PHBV, was studied. Irrespective of the blend composition, the calorimetric and FTIR spectroscopy analyses indicate that the blend components are immiscible. The kinetics of non-isothermal crystallization and melting behavior of PHBV were studied by differential scanning calorimetry (DSC) and examined using non-isothermal Avrami and Mo’s analyses. Based on Mo’s model, the PDCHI content has significant effect on the crystallization kinetics of PHBV matrix. Despite the immiscibility of these polymers, the amorphous polyvinyl ester could extensively control the rate of hydrolytic degradation.  相似文献   

18.
Natural rubber (NR) latex films with surface grafted poly(ethylene glycol) (PEG) chains were prepared by UV-induced graft copolymerization of methoxy poly(ethylene glycol) monomethacrylate (PEGMA) onto the plasma-pretreated NR latex films. PEGMA macromononers of different molecular weights were used. The UV-induced graft copolymerization of PEGMA onto the plasma-pretreated NR latex films was also explored with PEGMA of different macromonomer concentrations and with different UV graft copolymerization time. The surface microstructures and compositions of the PEG-modified NR latex films were characterized by contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) measurements. In general, higher macromonomer concentration and longer UV graft copolymerization time led to a higher graft yield. Water contact angle measurements revealed that the hydrophilicity of the NR latex film surface was greatly enhanced by the grafting of the PEG chains. The NR surface with a high density of grafted PEG was very effective in reducing protein adsorption and platelet adhesion. A lower graft concentration of the high-molecular-weight PEG was more effective than a high graft concentration of the low-molecular-weight PEG in reducing protein adsorption and platelet adhesion. © 2001 Kluwer Academic Publishers  相似文献   

19.
Myocardial tissue lacks the ability to appreciably regenerate itself following myocardial infarction (MI) which ultimately results in heart failure. Current therapies can only retard the progression of disease and hence tissue engineering strategies are required to facilitate the engineering of a suitable biomaterial to repair MI. The aim of this study was to investigate the in?vitro properties of an injectable biomaterial for the regeneration of infarcted myocardium. Fabrication of core/shell fibers was by co-axial electrospinning, with poly(glycerol sebacate) (PGS) as core material and poly-l-lactic acid (PLLA) as shell material. The PLLA was removed by treatment of the PGS/PLLA core/shell fibers with DCM:hexane (2:1) to obtain PGS short fibers. These PGS short fibers offer the advantage of providing a minimally invasive injectable technique for the regeneration of infarcted myocardium. The scaffolds were characterized by SEM, FTIR and contact angle and cell-scaffold interactions using cardiomyocytes. The results showed that the cardiac marker proteins actinin, troponin, myosin heavy chain and connexin 43 were expressed more on short PGS fibers compared to PLLA nanofibers. We hypothesized that the injection of cells along with short PGS fibers would increase cell transplant retention and survival within the infarct, compared to the standard cell injection system.  相似文献   

20.
Silica nanoparticles of ca. 20 nm in size were synthesized, from which hierarchically porous silica coatings were fabricated on poly(methyl methacrylate) (PMMA) substrates via layer-by-layer (LbL) assembly followed by oxygen plasma treatment. These porous silica coatings were highly transparent and superhydrophilic. The maximum transmittance reached as high as 99%, whereas that of the PMMA substrate is only 92%. After oxygen plasma treatment, the time for a water droplet to spread to a contact angle of lower than 5° decreased to as short as 0.5 s. Scanning and transmission electron microscopy were used to observe the morphology and structure of nanoparticles and coating surfaces. Transmission and reflection spectra were recorded on UV–vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号