首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We report for the first time a continuous-wave (CW) coherent radiation at 500.5 nm by intracavity sum-frequency generation of 1063 nm Nd:GdVO4 laser and 946 nm Nd:YAG laser. Blue-green laser is obtained by using a doubly cavity, type-II critical phase matching KTiOPO4 (KTP) crystal sum-frequency mixing. With total pump power of 27.8 W, TEM00 mode blue-green laser at 500.5 nm of 421 mW is obtained. At the output power level of 421 mW, the blue-green power stability is better than 2.8% and laser beam quality M 2 factor is 1.37.  相似文献   

2.
We report a continuous-wave (CW) blue laser emission by sum-frequency mixing in Nd:GdVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a blue laser at 490 nm is obtained by 1063 and 908 nm intracavity sum-frequency mixing. The maximum laser output power of 118 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 118 mW, the output stability is better than 4.2%.  相似文献   

3.
We report a continuous-wave (CW) green laser emission by sum-frequency mixing in Nd:GdVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a green laser at 538 nm is obtained by 912 and 1313 nm intracavity sum-frequency mixing. The maximum output power of 185 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 185 mW, the output stability is better than 3.3%.  相似文献   

4.
In this paper, we present experimental results concerning on the laser characteristics of Tm:YAG laser and Tm: GdVO4 laser. At room temperature, the maximum output power of Tm:YAG laser and Tm:GdVO4 laser is 210 and 145 mW, respectively. High efficiency can be achieved for both lasers at room temperature. Nevertheless, compared with Tm:GdVO4 laser, Tm:YAG laser can operate on single frequency with high power easily. As much as 60 mW of 2013.9 nm single-longitudinal-mode (SLM) laser was achieved for Tm:YAG laser. For Tm:GdVO4 laser 51 mW of 1919.7 nm SLM laser was achieved. The SLM Tm:YAG laser is better for using as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

5.
We report for the first time a continuous-wave (CW) orange radiation at 598 nm by intracavity sum-frequency generation of 1341 nm Nd:GdVO4 laser and 1080 nm Nd:YAlO3 (Nd:YAP) laser. Orange laser is obtained by using a doubly cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 36 W, TEM00 mode orange laser at 598 nm of 268 mW is obtained. The orange power stability in 30 min is better than 3.8%.  相似文献   

6.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:GdVO4 laser working at 1342 nm by using an uncoated V3+:YAG crystal as the saturable absorber, in which both a-cut and c-cut Nd:GdVO4 crystals are employed. At the maximum absorbed pump power of 9.45 W, the maximum average output power can reach 519 mW and 441 mW corresponding to the output coupler with different transmission of 3% and 10% by using an a-cut Nd:GdVO4 crystal at 1342 nm, while the shortest pulse duration could be as low as 21.7 ns and 22.3 ns with the repetition rate of 48.41 kHz and 53.25 kHz by using a c-cut Nd:GdVO4 crystal, corresponding to the output coupler with different transmission of 3% and 10% at 1342 nm, and the single Q-switched pulse energy are 6.67 uJ and 7.06 uJ, the pulse peak power are 307 W and 316 W, respectively. The experimental results show that c-cut Nd:GdVO4 laser can generate shorter pulse with higher peak power in comparison with a-cut one.  相似文献   

7.
We report for the first time a continuous-wave (CW) blue radiation at 494 nm by intracavity sumfrequency generation of 912 nm Nd:GdVO4 laser and 1079 nm Nd:YAlO3 (Nd:YAP) laser. Using type-I critical phase matching LiB3O5 (LBO) crystal, 494 nm blue laser was obtained by 912 and 1079 nm intra-cavity sum-frequency mixing, and output power of 179 mW was demonstrated. At the output power level of 179 mW, the output power stability is better than 3.5% and laser beam quality M 2 factor is 1.21.  相似文献   

8.
A dual-wavelength continuous-wave (CW) diode-pumped Nd:LuVO4 laser that generates simultaneous laser action at the wavelengths 1066 and 1343 nm is demonstrated. A total dual-wavelength output power of 2.58 W was achieved at the incident pump power of 18.2 W. Furthermore, intracavity sum-frequency mixing at 1066 and 1343 nm was then realized in a LBO crystal to reach the yellow range. We obtained a total CW yellow output power of 830 mW at 594 nm.  相似文献   

9.
We report a continuous-wave (CW) yellow laser emission by sum-frequency mixing in two Nd:LuVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a yellow laser at 590 nm is obtained by 1066 and 1321 nm intracavity sum-frequency mixing. The maximum laser output power of 223 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 223 mW, the output stability is better than 4.5%.  相似文献   

10.
Diode end-pumped single-frequency Tm:GdVO4 laser at room temperature was reported. The maximal output power of single-frequency is as high as 51 mW by using two uncoated fused YAG etalons, which are respectively 0.05 mm thick and 1 mm thick. We obtained the single frequency Tm:GdVO4 laser at 1919.7 nm. The slope efficiency is 1.4%. The single-longitudinal-mode (SLM) laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

11.
Y. Wu  G. Y. Jin  Y. Dong 《Laser Physics》2011,21(8):1378-1381
We report for the first time a continuous-wave (CW) blue-green radiation at 504 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1080 nm Nd:YAlO3 (Nd:YAP) laser. Using type-I critical phase matching LiB3O5 (LBO) crystal, 504 nm blue-green laser was obtained by 946 and 1080 nm intra-cavity sum-frequency mixing, and output power of 215 mW was demonstrated. At the output power level of 215 mW, the output power stability is better than 4.7% and laser beam quality M2 factor is 1.21.  相似文献   

12.
We report a coherent radiation at 494.5 nm by intra-cavity sum-frequency generation of 912 nm Nd:GdVO4 laser and 1080 nm Nd:CaYAlO4 laser. Blue laser is obtained by using a doubly folded cavity, type-II critical phase matching KTP (KTiOPO4) crystal sum-frequency mixing. With total pump power of 33 W (13.8 W pump power for 1080 nm Nd:CaYAlO4 laser and 19.2 W pump power for 912 nm Nd:GdVO4 laser), TEM00 mode blue laser at 494.5 nm of 1.6 W is obtained. The power stability in 30 min is better than 3.5%.  相似文献   

13.
We report for the first time a continuous-wave (CW) orange-red radiation at 620 nm by intracavity sum-frequency generation of 1085-nm Nd:YVO4 laser and 1444-nm Nd:YAG laser. Using type-II critical phase matching KTP crystal, 620-nm orange-red laser was obtained by 1085- and 1444-nm intra-cavity sum-frequency mixing, and output power of 223 mW was demonstrated. At the output power level of 223 mW, the output power stability is better than 3% and laser beam quality M 2 factor is 1.32.  相似文献   

14.
Wu  Y.  Zhang  X. H.  Sun  G. C. 《Laser Physics》2011,21(6):1074-1077
We report for the first time a coherent radiation at 555 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1343 nm Nd:LuVO4 laser. Yellow-green laser is obtained by using a doubly folded cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 31.9 W (13.7 W pump power for 1343 nm Nd:LuVO4 laser and 18.2 W pump power for 946 nm Nd:YAG laser), TEM00 mode yellow-green laser at 555 nm of 2.35 W is obtained.  相似文献   

15.
A diode end-pumped Tm:GdVO4 laser at room temperature is reported. The maximal output power of single-frequency is as high as 34 mW by using two uncoated fused etalons, which are respectively 0.05 mm thick YAG and 1mm thick quartz. We obtained the single frequency Tm:GdVO4 laser at 1897.6 nm with the slope efficiency of 1.3%. The single-longitudinal-mode (SLM) laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

16.
Fu  Q.  Jiang  H. L. 《Laser Physics》2012,22(5):907-910
We report a continuous-wave (CW) green laser emission by sum-frequency mixing in Nd:YVO4 and Nd:YLF crystals. Using type-II critical phase-matching (CPM) KTP crystal, a green laser at 539 nm is obtained by 914 and 1313 nm intracavity sum-frequency mixing. The maximum laser output power of 388 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 388 mW, the output stability is better than 4.6%.  相似文献   

17.
Liang  W.  Sun  G. C.  Yu  X.  Li  B. Z.  Jin  G. Y. 《Laser Physics》2011,21(6):1067-1070
We report for the first time a continuous-wave (CW) yellow laser emission by sum-frequency mixing in Nd:YAG crystal. Using type-I critical phase-matching LBO crystal, a yellow laser at 572 nm is obtained by 1444 and 946 nm intracavity sum-frequency mixing. The maximum laser output power of 178 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 178 mW, the output stability is better than 4.2%.  相似文献   

18.
A diode end-pumped single-frequency Tm:GdVO4 laser at room temperature was reported. The maximal output power of single-frequency is as high as 66 mW by using two uncoated fused etalons, which are respectively 0.05 mm thick YAG and 1 mm thick quartz. We obtained the single frequency Tm:GdVO4 laser at 1875.1 nm. The slope efficiency is 1.5%. The change of the lasing wavelength on temperature was also measured. The single-longitudinal-mode (SLM) laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

19.
We report for the first time a continuous-wave (CW) coherent radiation at 485 nm by intracavity sum-frequency generation of 916 nm Nd:LuVO4 laser and 1030 nm Yb:YAG laser. Blue laser is obtained by using a doubly cavity, type-II critical phase matching KTP crystal sum-frequency mixing. With total pump power of 30.2 W, TEM00 mode blue laser at 485 nm of 179 mW is obtained. The blue power stability in 30 min is better than 3%.  相似文献   

20.
We experimentally demonstrate an all solid-state laser producing single-frequency output at 473 nm. Spatial gain hole-burning in the gain material has been eliminated by use of twisted-mode cavity approach. By carefully designing, a V-cavity with two beam waists is chosen to provide the optimum beam radius in the gain medium Nd:YAG and second harmonic generation crystal LBO. A total output power of 105 mW was achieved when the laser was diode-end-pumped at an incident power of 3.5 W; the light-light conversion efficiency is up to 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号