首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We have obtained a detailed paleoenvironmental record in the Summer Lake Basin, Oregon (northwestern Great Basin, US) spanning from 250ka-5 ka. This record is derived from core and outcrop sites extending from a proximal deltaic setting to near the modern depocenter. Lithostratigraphic, paleontologic (ostracodes and pollen) and geochemical indicators all provide evidence for hydroclimate and climate change over the study interval.Lithostratigraphic analysis of the Summer Lake deposits allows subdivision into a series of unconformity - or paraconformity-bound lithosomes. The unconformity and facies histories indicate that the lake underwent several major lake-level excursions through the Middle and Late Pleistocene. High stands occurred between ~200 and ~165 ka, between ~89 and 50 ka and between ~25 and 13 ka. Uppermost Pleistocene and Holocene sediments have been removed by deflation of the basin, with the exception of a thin veneer of late Holocene sediment. These high stands correspond closely with Marine Oxygen Isotope Stages 6, 4 and 2, within the margin of error associated with the Summer Lake age model. A major unconformity from ~158 ka until ~102 ka (duration varies between sites) interrupts the record at both core and outcrop sites.Lake level fluctuations, in turn are closely linked with TOC and salinity fluctuations, such that periods of lake high stands correlate with periods of relatively low productivity, fresher water and increased water inflow/evaporation ratios. Paleotemperature estimates based on palynology and geochemistry (Mg/Ca ratios in ostracodes) indicate an overall decrease in temperature from ~236 ka-165 ka, with a brief interlude of warming and drying immediately after this (prior to the major unconformity). This temperature decrease was superimposed on higher frequency variations in temperature that are not evident in the sediments deposited during the past 100 ka. Indicators disagree about temperatures immediately following the unconformity (~102-95 ka), but most suggest warmer temperatures between ~100-89 ka, followed by a rapid and dramatic cooling event. Cooler conditions persisted throughout most of the remainder of the Pleistocene at Summer Lake, with the possible exception of brief warm intervals about 27-23 ka. Paleotemperature estimates for the proximal deltaic site are more erratic than for more distal sites, indicative of short term air temperature excursions that are buffered in deeper water.Estimates of paleotemperature from Mg/Ca ratios are generally in good agreement with evidence from upland palynology. However, there is a significant discordance between the upland pollen record and lake indicators with respect to paleoprecipitation for some parts of the record. Several possibilities may explain this discordance. We favor a direct link between lake level and salinity fluctuations and climate change, but we also recognize the possibility that some of these hydroclimate changes in the Summer Lake record may have resulted from episodic drainage captures of the Chewaucan River between the Summer Lake and Lake Abert basins.  相似文献   

2.
Sevier Lake is the modern lake in the topographically closed Sevier Lake basin, and is fed primarily by the Sevier River. During the last 12 000 years, the Beaver River also was a major tributary to the lake. Lake Bonneville occupied the Sevier Desert until late in its regressive phase when it dropped to the Old River Bed threshold, which is the low point on the drainage divide between the Sevier Lake basin and the Great Salt Lake basin. Lake Gunnison, a shallow freshwater lake at 1390 m in the Sevier Desert, overflowed continuously from about 12 000 to 10 000 yr B.P., into the saline lake in the Great Salt Lake basin, which continued to contract. This contrast in hydrologic histories between the two basins may have been caused by a northward shift of monsoon circulation into the Sevier Lake basin, but not as far north as the Great Salt Lake basin. Increased summer precipitation and cloudiness could have kept the Sevier Lake basin relatively wet.By shortly after 10 000 yr B.P. Lake Gunnison had stopped overflowing and the Sevier and Beaver Rivers had begun depositing fine-grained alluvium across the lake bed. Sevier Lake remained at an altitude below 1381 m during the early and middle Holocene. Between 3000 and 2000 yr B.P. the lake expanded slightly to an altitude of about 1382.3 m. A second expansion, probably in the last 500 years, culminated at about 1379.8 m. In the mid 1800s the lake had a surface altitude of 1379.5 m. Sevier Lake was essentially dry (1376 m) from 1880 until 1982. In 1984–1985 the lake expanded to a 20th-century high of 1378.9 m in response to abnormally high snow-melt runoff in the Sevier River. The late Holocene high stands of Sevier Lake were most likely related to increased precipitation derived from westerly air masses.This is the first of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

3.
Diatom assemblages preserved in sediment cores from closed-basin lakes can provide high-resolution records of past hydrologic and climatic conditions, including long-term patterns in the intensity, duration, and frequency of droughts. At Moon Lake, a closed-basin lake in eastern North Dakota, a comparison of diatom-inferred salinity and the precipitation-based Bhalme-Mooley Drought Index (BMDI) over the last 100 years was highly significant, suggesting that the diatom record contains a sensitive archive of past climatic conditions. A sub-decadal record of inferred salinity for the past 2300 years indicates that extreme droughts of greater intensity than those during the 1930s 'Dust Bowl' were more frequent prior to A.D. 1200. This high frequency of extreme droughts persisted for centuries and was most pronounced from A.D. 200–370, A.D. 700–850 and A.D. 1000–1200. A pronounced shift to generally wetter conditions with less severe droughts of shorter duration occured at A.D. 1200. This abrupt change coincided with the end of the 'Medieval Warm Period' (A.D. 1000–1200) and the onset of the 'Little Ice Age' (A.D. 1300–1850).  相似文献   

4.
Analyses of down-core variations in pollen and charcoal in two short cores of lake sediment and wood samples taken from the in situ remains of Nuxia congesta from Lake Emakat, a hydrologically-closed volcanic crater lake occupying the Empakaai Crater in northern Tanzania, have generated evidence of past vegetation change and lake level fluctuations. Eight AMS radiocarbon (14C) dates on bulk samples of lake sediment provide a chronological framework for the two cores and indicate that the sediment record analysed incorporates the last c. 1200 years. The in situ remains of a Nuxia congesta tree, now standing in deep water, were dated with three additional AMS 14C dates, suggesting tree growth within the interval ∼1500–1670 AD. Down-core variations in pollen from terrestrial taxa, particularly the montane forest trees Hagenia abyssinica and Nuxia congesta, indicate a broad period of generally more arid conditions in the catchment to c. 1200 AD and at a prolonged period between c. 1420 and 1680 AD. Variations in pollen from plants in lake margin vegetation indicate low lake levels, presumably as a result of reduced effective precipitation, contemporary with indications of relatively dry conditions mentioned above, but also during the late 18th and the late 19th centuries. The presence of charcoal throughout both cores indicates the frequent occurrence of vegetation fires. An increase in burning, evident in the charcoal data and dated to the early to mid second millennium AD, could relate to an expansion of human population levels and agricultural activity in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号