首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Let R = (r1,…, rm) and S = (s1,…, sn) be nonnegative integral vectors, and let U(R, S) denote the class of all m × n matrices of 0's and 1's having row sum vector R and column sum vector S. An invariant position of U(R, S) is a position whose entry is the same for all matrices in U(R, S). The interchange graph G(R, S) is the graph where the vertices are the matrices in U(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We prove that when 1 ≤ rin ? 1 (i = 1,…, m) and 1 ≤ sjm ? 1 (j = 1,…, n), G(R, S) is prime if and only if U(R, S) has no invariant positions.  相似文献   

3.
Let Fm×n (m?n) denote the linear space of all m × n complex or real matrices according as F=C or R. Let c=(c1,…,cm)≠0 be such that c1???cm?0. The c-spectral norm of a matrix A?Fm×n is the quantity
6A6ci=Imciσi(A)
. where σ1(A)???σm(A) are the singular values of A. Let d=(d1,…,dm)≠0, where d1???dm?0. We consider the linear isometries between the normed spaces (Fn,∥·∥c) and (Fn,∥·∥d), and prove that they are dual transformations of the linear operators which map L(d) onto L(c), where
L(c)= {X?Fm×n:X has singular values c1,…,cm}
.  相似文献   

4.
Let H be a subset of the set Sn of all permutations
12???ns(1)s(2)???s(n)
C=6cij6 a real n?n matrix Lc(s)=c1s(1)+c2s(2)+???+cns(n) for s ? H. A pair (H, C) is the existencee of reals a1,b1,a2,b2,…an,bn, for which cij=a1+bj if (i,j)?D(H), where D(H)={(i,j):(?h?H)(j=h(i))}.For a pair (H,C) the specifity of it is proved in the case, when H is either a special cyclic class of permutations or a special union of cyclic classes. Specific pairs with minimal sets H are in some sense described.  相似文献   

5.
For each natural number n, let a0(n) = n, and if a0(n),…,ai(n) have already been defined, let ai+1(n) > ai(n) be minimal with (ai+1(n), a0(n) … ai(n)) = 1. Let g(n) be the largest ai(n) not a prime or the square of a prime. We show that g(n) ~ n and that g(n) > n + cn12log(n) for some c > 0. The true order of magnitude of g(n) ? n seems to be connected with the fine distribution of prime numbers. We also show that “most” ai(n) that are not primes or squares of primes are products of two distinct primes. A result of independent interest comes of one of our proofs: For every sufficiently large n there is a prime p < n12 with [np] composite.  相似文献   

6.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

7.
Let x?Sn, the symmetric group on n symbols. Let θ? Aut(Sn) and let the automorphim order of x with respect to θ be defined by
γθ(x)=min{k:x xθ xθ2 ? xθk?1=1}
where is the image of x under θ. Let αg? Aut(Sn) denote conjugation by the element g?Sn. Let b(g; s, k : n) ≡ ∥{x ? Sn : kγαg(x)sk}∥ where s and k are positive integers and ab denotes a divides b. Further h(s, k : n) ≡ b(1; s, k : n), where 1 denotes the identity automorphim. If g?Sn let c = f(g, s) denote the number of symbols in g which are in cycles of length not dividing the integer s, and let gs denote the product of all cycles in g whose lengths do not divide s. Then gs moves c symbols. The main results proved are: (1) recursion: if n ? c + 1 and t = n ? c ? 1 then b(g; s, 1:n)=∑is b(g; s, 1:n?1)(ti?1(i?1)! (2) reduction: b(g; s, 1 : c)h(s, 1 : i) = b(g; s, 1 : i + c); (3) distribution: let D(θ, n) ≡ {(k, b) : k?Z+ and b = b(θ; 1, k : n) ≠ 0}; then D(θ, m) = D(φ, m) ∨ m ? N = N(θ, φ) iff θ is conjugate to φ; (4) evaluation: the number of cycles in gss of any given length is smaller than the smallest prime dividing s iff b(gs; s, 1 : c) = 1. If g = (12 … pm)t and skpm then b(g;s,k:pm) {0±1(mod p).  相似文献   

8.
Let K(n;r) denote the complete r-partite graph K(n, n,…, n). It is shown here that for all even n(r ? 1) ? 2, K(n;r) is the union of n(r ? 1)2 of its Hamilton circuits which are mutually edge-disjoint, and for all odd n(r ? 1) ? 1, K(n;r) is the union of (n(r ? 1) ? 1)2 of its Hamilton circuits and a 1-factor, all of which are mutually edge-disjoint.  相似文献   

9.
Let Pij and qij be positive numbers for ij, i, j = 1, …, n, and consider the set of matrix differential equations x′(t) = A(t) x(t) over all A(t), where aij(t) is piecewise continuous, aij(t) = ?∑ijaij(t), and pij ? aij(t) ? qij all t. A solution x is also to satisfy ∑i = 1nxi(0) = 1. Let Ct denote the set of all solutions, evaluated at t to equations described above. It is shown that Ct, the topological closure of Ct, is a compact convex set for each t. Further, the set valued function Ct, of t is continuous and limitt → ∞C?t = ∩ C?t.  相似文献   

10.
In this paper we studied m×n arrays with row sums nr(n,m) and column sums mr(n,m) where (n,m) denotes the greatest common divisor of m and n. We were able to show that the function Hm,n(r), which enumerates m×n arrays with row sums and column sums nr(m,n) and mr(n,m) respectively, is a polynomial in r of degree (m?1)(n?1). We found simple formulas to evaluate these polynomials for negative values, ?r, and we show that certain small negative integers are roots of these polynomials. When we considered the generating function Gm,n(y) = Σr?0Hm,n(r)yr, it was found to be rational of degree less than zero. The denominator of Gm,n(y) is of the form (1?y)(m?1)(n?1)+3, and the coefficients of the numerator are non-negative integers which enjoy a certain symmetric relation.  相似文献   

11.
We discuss partitions of the edge set of a graph into subsets which are uniform in their internal relationships; i.e., the edges are independent, they are incident with a common vertex (a star), or three edges meet in a triangle. We define the cochromatic index z′(G) of G to be the minimum number of subsets into which the edge set of G can be partitioned so that the edges in any subset are either mutually adjacent or independent.Several bounds for z′(G) are discussed. For example, it is shown that δ(G) - 1 ? z′(G)? Δ(G) + 1, with the lower bound being attained only for a complete graph. Here δ(G) and Δ(G) denote the minimum and maximum degrees of G, respectively. The cochromatic index is also found for complete n-partite graphs.Given a graph G define a sequence of graphs G0, G1,…, Gk, with G0=G and
Gi+1=Gi -{;υ | degGi υ = Δ(Gi)}
, with k being the first value of i for which Gi is regular. Let φi(G) = |V(G) – V(Gi| + Δ (Gi) and setφ(G) = min0?i?kφi(G). We show that φ(G) ? 1 ?z′(G)?φ(G) + 1. We then s that a graph G is of class A, B or C, if z′(G) = φ(G) ? 1, φ(G), orφ(G) + 1, respectively. Examples of graphs of each class are presented; in particular, it is shown that any bipartite graph belongs to class B.Finally, we show that if a, b and c are positive integers with a?b?c + 1 and a?c, then unless a = c = b - 1 = 1, there exists a graph G having δ(G) = a, Δ(G) =c, and z′(G) = b.  相似文献   

12.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

13.
Using old results on the explicit calculation of determinants, formulae are given for the coefficients of P0(z) and P0(z)fi(z) ? Pi(z), where Pi(z) are polynomials of degree σ ? ρi (i=0,1,…,n), P0(z)fi(z) ? Pi(z) are power series in which the terms with zk, 0?k?σ, vanish (i=1,2,…,n), (ρ0,ρ1,…,ρn) is an (n+1)-tuple of nonnegative integers, σ=ρ0+ρ1+?+ρn, and {fi}ni=1 is the set of hypergeometric functions {1F1(1;ci;z)}ni=1(ci?Zz.drule;N, ci ? cj?Z) or {2F0(ai,1;z)}ni=1(ai ?Z?N, ai ? aj?Z) under the condition ρ0?ρi ? 1 (i=1,2,…,n).  相似文献   

14.
Let T(R) denote the set of all tournaments with score vector R = (r1, r2,…, rn). R. A. Brualdi and Li Qiao (“Proceedings of the Silver Jubilee Conference in Combinatorics at Waterloo,” in press) conjectured that if R is strong with r1r2 ≤ … ≤ rn, then |T(R)| ≥ 2n?2 with equality if and only if R = (1, 1, 2,…, n ? 3, n ? 2, n ? 2). In this paper their conjecture is proved, and this result is used to establish a lower bound on the cardinality of T(R) for every R.  相似文献   

15.
Let V denote a finite dimensional vector space over a field K of characteristic 0, let Tn(V) denote the vector space whose elements are the K-valued n-linear functions on V, and let Sn(V) denote the subspace of Tn(V) whose members are the fully symmetric members of Tn(V). If Ln denotes the symmetric group on {1,2,…,n} then we define the projection PL : Tn(V) → Sn(V) by the formula (n!)?1Σσ ? Ln Pσ, where Pσ : Tn(V) → Tn(V) is defined so that Pσ(A)(y1,y2,…,yn = A(yσ(1),yσ(2),…,yσ(n)) for each A?Tn(V) and yi?V, 1 ? i ? n. If xi ? V1, 1 ? i ? n, then x1?x2? … ?xn denotes the member of Tn(V) such that (x1?x2· ? ? ?xn)(y1,y2,…,yn) = Пni=1xi(yi) for each y1 ,2,…,yn in V, and x1·x2xn denotes PL(x1?x2? … ?xn). If B? Sn(V) and there exists x i ? V1, 1 ? i ? n, such that B = x1·x2xn, then B is said to be decomposable. We present two sets of necessary and sufficient conditions for a member B of Sn(V) to be decomposable. One of these sets is valid for an arbitrary field of characteristic zero, while the other requires that K = R or C.  相似文献   

16.
Put Zn = {1, 2,…, n} and let π denote an arbitrary permutation of Zn. Problem I. Let π = (π(1), π(2), …, π(n)). π has an up, down, or fixed point at a according as a < π(a), a > π(a), or a = π(a). Let A(r, s, t) be the number of πZn with r ups, s downs, and t fixed points. Problem II. Consider the triple π?1(a), a, π(a). Let R denote an up and F a down of π and let B(n, r, s) denote the number of πZn with r occurrences of π?1(a)RaRπ(a) and s occurrences of π?1(a)FaFπ(a). Generating functions are obtained for each enumerant as well as for a refinement of the second. In each case use is made of the cycle structure of permutations.  相似文献   

17.
Let X be a maximal set of pairwise disjoint partitions of n into t distinct parts. Let Mt(n) (resp. mt(n)) denote the size of the largest (resp. smallest) such maximal set X. Upper and lower bounds for Mt(n)n and mt(n)n are established.  相似文献   

18.
Let f(r) denote the smallest number of points in a non-bipartite r-regular graph of girth 4. It is known that f(r) ≥ 5r2 and that f(r) = 5r2 if r is even. It is proved that f(r) ~ 5r2 and exact values for f(r) are provided for odd integers of the form r = 4n ? 1. Tight bounds for f(r) for odd integers of the form r= 4n + 1 are given.  相似文献   

19.
For a class C of graphs, denote by u(C) the least value of m so that for some graph U on m vertices, every G ? C occurs as a subgraph of U. In this note we obtain rather sharp bounds on u(C) when C is the class of caterpillars on n vertices, i.e., tree with property that the vertices of degree exceeding one induce a path.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号