首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different bioactive flavonoid compounds including catechin, epicatechin, rutin, myricetin, luteolin, apigenin and naringenin were obtained from spearmint (Mentha spicata L.) leaves by using conventional soxhlet extraction (CSE) and supercritical carbon dioxide (SC-CO2) extraction at different extraction schemes and parameters. The effect of different parameters such as temperature (40, 50 and 60 °C), pressure (100, 200 and 300 bar) and dynamic extraction time (30, 60 and 90 min) on the supercritical carbon dioxide (SC-CO2) extraction of spearmint flavonoids was investigated using full factorial arrangement in a completely randomized design (CRD). The extracts of spearmint leaves obtained by CSE and optimal SC-CO2 extraction conditions were further analyzed by high performance liquid chromatography (HPLC) to identify and quantify major bioactive flavonoid compounds profile. Comparable results were obtained by optimum SC-CO2 extraction condition (60 °C, 200 bar, 60 min) and 70% ethanol soxhlet extraction. As revealed by the results, soxhlet extraction had a higher crude extract yield (257.67 mg/g) comparing to the SC-CO2 extraction (60.57 mg/g). Supercritical carbon dioxide extract (optimum condition) was found to have more main flavonoid compounds (seven bioactive flavonoids) with high concentration comparing to the 70% ethanol soxhlet extraction (five bioactive flavonoids). Therefore, SC-CO2 extraction is considered as an alternative process compared to the CSE for obtaining the bioactive flavonoid compounds with high concentration from spearmint leaves.  相似文献   

2.
Supercritical fluid extraction of lipids from spent coffee grounds was studied in this work. Extraction experiments were carried out with supercritical carbon dioxide at different pressure and temperature conditions to study the influence of those process parameters on the extraction rate and oil composition. Supercritical carbon dioxide extracted up to 85% of the total amount of oil of spent coffee grounds after 3 h of extraction (corresponding to a maximum yield of 15.4 goil/100 gdry spent coffee). The fatty acid composition of the extracted oil showed the presence of fatty acids of C14, C16, C18, and C20 carbon chains. Palmitic (C16:0) and linoleic (C18:2) acids were the major fatty acids and comprise about 35% each of the total fatty acid content of the oil. A soxhlet extraction with n-hexane was done for comparison resulting in a maximum yield of oil of 18.3 goil/100 gdry spent coffee. Finally, a diffusional model that takes into account the properties of the substrate, the solute partition between the solid and the supercritical phase, and the mass transfer coefficient and axial dispersion in the fluid phase was applied to this system and a good agreement with experimental results was obtained.  相似文献   

3.
This study investigated co-solvent modified supercritical carbon dioxide extraction of lipids and carotenoids from the microalgal species of Nannochloropsis oculata. Supercritical carbon dioxide (SCCO2) anti-solvent precipitation of carotenoids from the extracts following purification of Zeaxanthin was also examined. Continuous modification by ethanol of supercritical carbon dioxide extractions showed that the addition ratio was important for extraction efficiency of lipids and carotenoids. SCCO2 extraction at 350 bar, 323 K and 16.7 wt% of ethanol addition yielded 239.7 mg of triglycerides and 7.61 mg of carotenoids per gram extract with a total yield of 15.5%. SCCO2 anti-solvent experiments showed that the content of Zeaxanthin in the precipitate was greater than that in the fraction of normal phase column chromatography. The purest Zeaxanthin (93.8%) was then successfully isolated from the purified fraction by using a reverse-phase HPLC column chromatography. Rat macrophages treated by ultra-sonicated water extracts of the SCCO2 defatted algae showed a positive phagocytotic activity.  相似文献   

4.
Supercritical fluid extraction from dried banana peel (Musa spp., subgroup Prata, genomic group AAB, popularly known in Brazil as Enxerto) was studied. The aspects investigated were: overall extraction curve (OEC), mass transfer modeling of the yield curves, economical analysis of the process and phase equilibrium data for the pseudo-ternary system of banana peel extract, carbon dioxide and ethanol. The extraction operating conditions evaluated were: pressure ranging from 100 bar to 300 bar, temperature from 40 to 50 °C and constant solvent flow rate of 5.0 gCO2/min. Experimental extraction data were correlated using three kinetic models based on mass transfer equations (logistic, diffusion and Esquível models). Phase equilibrium measurements were performed using pressure from 64.9 bar to 239.9 bar and mass fraction of supercritical extract from 0.52 to 3.55 wt%. Yield results ranged from 0.6 to 6.9% d.b. (dry basis). The lowest deviation between experimental and correlated data was obtained by the Logistic model, except for the curve at 300 bar and 40 °C which was best represented by the Esquível model. The economical analysis identified the possibility to apply the supercritical fluids to obtain extracts from banana peel in an industrial scale. Phase equilibrium for the supercritical extract from banana peel with carbon dioxide modified by ethanol exhibited liquid-liquid, vapor-liquid (bubble point) and vapor-liquid-liquid phase transitions. A crossover phenomenon for the systems evaluated was observed for pressures between 200 bar and 240 bar, for both groups of assays, i.e., supercritical extraction and phase equilibrium.  相似文献   

5.
Supercritical fluid carbon dioxide (SF-CO2) extraction (SFE) of flavonoids from Maydis stigma and its nitrite-scavenging ability were investigated. The effects of extraction time, particle size and co-solvent composition in terms of water content in ethanol were first optimized. Then, a Box-Behnken design combined with response surface methodology (RSM) was employed to study the effects of three independent variables (temperature, pressure and co-solvent amount) on the extraction yield of flavonoids. A maximal extraction yield of flavonoids of approximately 4.24 mg/g of M. stigma by SFE was obtained under optimal conditions (a temperature of 50.88 °C, a pressure of 41.80 MPa, a co-solvent amount of 2.488 mL/g and an extraction time of 120 min with 0.4-mm particle sizes and 20% aqueous ethanol as the co-solvent). Furthermore, the nitrite-scavenging ability of the flavonoid-enriched SFE extracts was assessed using the Griess reagent. The flavonoid-enriched SFE extracts exhibited the highest scavenging ability on nitrite (88.1 ± 3.04%) at the concentration of 500 μg/mL and at pH 3.0. The nitrite-scavenging ability of the extracts appeared to be concentration dependent but negatively correlated with the pH.  相似文献   

6.
Supercritical fluid chromatography (SFC) was employed to fractionate thyme (Thymus vulgaris L.) extracts, which were obtained by supercritical carbon dioxide extraction of thyme leaves. First, different supercritical extracts were produced at 313 K and at different pressures (15, 30 and 40 MPa). Thymol, a monocyclic terpenoid with recognized antiseptic, analgesic and anti-inflammatory properties, was identified and quantified in the different samples by GC-MS. Then, the supercritical extracts were fractionated by semi-preparative SFC, and different conditions such as pressure, temperature and amount of cosolvent (ethanol) employed were studied. Around a two fold increase of thymol was achieved at 15 MPa, 50 °C and 3% ethanol cosolvent, recovering 97% of the monocyclic terpenoid extracted.  相似文献   

7.
The objective of the work was to optimize the extraction of Persea indica L. bioactive compounds by means of supercritical fluid extraction (SFE) and analyze their insecticidal effects. P. indica L. is one of the dominant species of the Canarian laurel forest, a relict of the Tertiary flora. Different extraction conditions (pressure, plant material particle size, temperature, CO2 flow) and the influence of entrainer were tested and the evolution of the extracted compounds was screened by HPLC-MS. A comparison with conventional techniques such as hydrodistillation (HD) or organic solvent extraction (OSE) was also presented. Particularly, four CO2 densities ranging from 628.61 kg/m3 to 839.81 kg/m3 were studied in the range of 10.0-20.0 MPa and 40-50 °C. The extracts contained insecticidal ryanodanes of great interest, previously described as insecticidal components of P. indica. The insecticidal antifeedant activity of selected extracts was inspected. A model based on mass transfer equations, the Sovová model, was successfully applied to correlate the experimental data.  相似文献   

8.
Micronized cholesterol particles were produced via the Rapid Expansion of Supercritical CO2 Solutions (RESS) process. Taguchi design was used for designing the experimental plan to investigate the effects of three parameters including extraction temperature (40-60 °C), extraction pressure (100-160 bar) and nozzle diameter (0.15-0.24 mm) on the size and morphology of the cholesterol particles produced by the RESS process. The characterization of the particles was carried out using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements to evaluate the performance of RESS process. The average particle size of the original material was 55 μm ± (2.84) while the average particle size of cholesterol after size reduction via the RESS process was between the minimum of 0.62 μm ± (0.03) and the maximum of 4.83 μm ± (0.18) depending upon the experimental conditions used. It was observed that both increasing the temperature from 40 to 60 °C and increasing the nozzle diameter from 0.15 to 0.24 mm result a reducing effect on the average particle size, whereas extraction pressure (100-160 bar) change has slight effect on the average particle size.  相似文献   

9.
Supercritical carbon dioxide was used for partially selective extraction of triacetin from a mixture of triacetin, diacetin, and monoacetin with a molar ratio of 1:2:1. The extraction was carried out in two stages. In the first stage, a central composite design was used to optimize the four variables of pressure, temperature, liquid CO2 flow rate, and extraction time at three levels using a semi-continuous, supercritical carbon dioxide extraction setup. The composition of the extract under the predicted optimum conditions (i.e., 109 bar, 56 °C, 0.86 mL min−1, and 61 min) was about 69% triacetin accompanied by only 30% diacetin and no detectable monoacetin. In the second stage, the effect of the two factors, pressure (100, 109, and 140 bar) and liquid CO2 flow rates of 0.86 and 1.5 mL min−1 measured at average laboratory temperature (27 °C) and pressure (0.89 bar), were studied using a continuous, supercritical carbon dioxide fractionation setup equipped with a glass-bead packed column kept under a thermal gradient of 56-70 °C. The experimental design was organized as a 3 × 2 general factorial design. Under the best conditions (i.e., 140 bar and 1.5 mL min−1), the extraction yield of triacetin and diacetin were 41.8 and 3.0%, respectively, without any detectable monoacetin as verified by GC-FID.  相似文献   

10.
Pandan (Pandanus amaryllifolius Roxb.) leaf is a source of natural flavoring widely used in South-east Asia. The major compound contributing to the characteristic flavor of Pandan is 2-acetyl-1-pyrroline (2AP). This highly volatile compound also contributes significantly to the flavor of aromatic rice such as basmati and jasmine rice. As the consumer requirement for use of natural flavors, extraction of components from natural sources has been sought. In this study, supercritical carbon dioxide (SC-CO2) and solvent extraction of components from Pandan leaves were performed. Experimental parameters included particle size and drying method (oven and freeze drying). Results indicated that the initial value of moisture content and particle size of Pandan leaves had the greatest effect on the total yield and 2AP concentration of the extracts. Almost 80% of water in Pandan leaves can be removed by drying. Yields of supercritical extracts were 10 times lower when compared to the hexane extracts. The total yield of extracts was increased up to 50% with decreasing particle size of Pandan leaves. Extraction of coarsely ground freeze-dried Pandan leaves by SC-CO2 obtained the highest yield (0.88 ± 0.06%) followed by oven dried (0.38 ± 0.09%) and fresh leaves (0.34 ± 0.01%). The 2AP was identified by GC-MS and analyzed by GC-FID. Supercritical and hexane extracts of pre-treated Pandan leaves were found to have a small quantity of 2AP ranging between 0.04 ± 0.01 and 0.45 ± 0.01 ppm. Grinding pre-treatment was the best method for both SC-CO2 and hexane extractions while the freeze drying method was the best for SC-CO2.  相似文献   

11.
Jatropha curcas L. has recently been hailed as the promising feedstock for biodiesel production as it does not compete with food sources. Conventional production of biodiesel from J. curcas L. seeds involve two main processing steps; extraction of oil and subsequent esterification/transesterification to fatty acid methyl esters (FAME). In this study, the feasibility of in situ extraction, esterification and transesterification of J. curcas L. seeds to biodiesel was investigated. It was found that the size of the seed and reaction period effect the yield of FAME and amount of oil extracted significantly. Using seed with size less than 0.355 mm and n-hexane as co-solvent with the following reaction conditions; reaction temperature of 60 °C, reaction period of 24 h, methanol to seed ratio of 7.5 ml/g and 15 wt% of H2SO4, the oil extraction efficiency and FAME yield can reached 91.2% and 99.8%, respectively. This single step of reactive extraction process therefore can be a potential route for biodiesel production that reduces processing steps and cost.  相似文献   

12.
Mechanochemical extraction technique was explored for efficient and selective extraction of magnolol from Magnolia officinalis. This process was carried out using a high intensive activator, AGO-2. The yield of magnolol via mechanochemical method was maximized under the following conditions: milling with Na2CO3 (2.0 wt%) for 7 min; extraction by water at 40 °C and liquid/solid ratio of 25:1 mL/g for 20 min; precipitation at pH 3.5. The results from scanning electron micrographs, infra-red spectrum and nuclear magnetic resonance indicate that mechanochemical action could result in the disruption of cell walls and the transformation of magnolol into a water-soluble salt form with the addition of sodium carbonate. Compared with superfine grinding extraction and heat-reflux extraction, mechanochemical extraction method reduced both extraction time and temperature, and also achieved a higher magnolol yield and content in the crude extracts.  相似文献   

13.
Brazilian Ginseng extracts of two species, Pfaffia paniculata and Pfaffia glomerata, were obtained by supercritical fluid extraction (SFE) with CO2 and by low-pressure solvent extraction (LPSE) with methanol, hexane and ethanol. The SFE assays were conducted at pressures of 100, 200 and 300 bar, and temperatures of 30 and 50 °C. The qualitative chemical compositions of the extracts were determined by thin layer chromatography (TLC). One of the active principles of interest from P. glomerata extract, β-ecdysone, was identified and quantified by HPLC. The antioxidant activities of Brazilian Ginseng extracts were determined by the coupled reaction of linolenic acid and β-carotene. For P. paniculata, the highest SFE yield was obtained at 200 bar/50 °C (0.22%, dry basis—d.b.), while the best extraction condition for P. glomerata was obtained at 200 bar/30 °C (0.18%, d.b.). The higher extract yields obtained by LPSE were 2.0% and 5.8% (w/w, d.b.) for P. paniculata and P. glomerata, respectively, both obtained with methanol as extraction solvent. From the overall extraction curve of P. glomerata, it was possible to obtain the kinetic parameters of extraction; the duration of the CER (constant extraction rate) period was determined as 134 min. The TLC plates showed the possible presence of flavonoids in the ethanolic extract for both Pfaffia species. The antioxidant activity analysis detected that LPSE extracts had higher activity than SFE extracts.  相似文献   

14.
This study investigates extraction of Passiflora seed oil by using supercritical carbon dioxide. Artificial neural network (ANN) and response surface methodology (RSM) were applied for modeling and the prediction of the oil extraction yield. Moreover, process optimization were carried out by using both methods to predict the best operating conditions, which resulted in the maximum extraction yield of the Passiflora seed oil. The maximum extraction yield of Passiflora seed oil was estimated by ANN to be 26.55% under the operational conditions of temperature 56.5 °C, pressure 23.3 MPa, and the extraction time 3.72 h; whereas the optimum oil extraction yield was 25.76% applying the operational circumstances of temperature 55.9 °C, pressure 25.8 MPa, and the extraction time 3.95 h by RSM method. In addition, mean-squared-error (MSE) and relative error methods were utilized to compare the predicted values of the oil extraction yield obtained from both models with the experimental data. The results of the comparison reveal the superiority of ANN model compared to RSM model.  相似文献   

15.
The supercritical fluid extraction (SFE) followed by the dispersive liquid-liquid microextraction (DLLME) has been developed for extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. PAHs were employed as model compounds to assess the extraction procedure and were determined by gas chromatography-flame ionization detection (GC-FID). SFE of PAHs was performed at 313 K and 253.2 bar, at static and dynamic times 10 and 30 min, respectively. The extracted PAHs were collected in 1 mL of acetonitrile. Subsequently, 16 μL of chlorobenzene (as extraction solvent) was added to collecting solvent (1.0 mL of acetonitrile). Then, the resulted mixture was injected into 5.0 mL of aqueous solution, rapidly. After centrifugation, the PAHs in the sedimented phase were analyzed by GC-FID. Effects of significant parameters on the extraction in SFE and DLLME methods were investigated. Under the optimum conditions, the calibration plots were linear in the range of 0.4-41.6 mg kg−1 and the limits of detection (LODs) were 0.2 mg kg−1 for all of the analytes. Analysis of PAHs in different solid samples showed that the improved technique has great potential for PAHs analysis in marine sediments. SFE-DLLME leads to high preconcentration factor, easy use of DLLME in solid samples and solving the main problem of SFE that is the extra step (vaporization of large volume of toxic organic solvent) after extraction needed prior to final analysis.  相似文献   

16.
Extraction of the fresh flowers of Michelia champaca L. with liquid CO2 provided a floral extract in 1.0 ± 0.04 wt% yields. The extract so obtained contains far less waxes and is organoleptically very superior. Similarly extraction with pentane gave the so-called ‘Concrete’ in 1.58 ± 0.06 wt%. While the concrete contains co-extracted floral waxes that make it unsuitable for blending with other perfumes, direct extraction with CO2 is an expensive process mainly due to low bulk density of flowers and their availability during short flowering season. On the other hand, fractionation of the concrete with liquid CO2 to separate the waxy components has provided solvent and almost wax free fractions. The duration of extractive fractionation has been optimized for selective extraction with liquid CO2 at 62 bar. These liquid CO2 fractions of concrete and liquid CO2 extract of flowers were analyzed by GC and GC/MS and their composition compared with that of concrete and partially de-waxed absolute obtained in the conventional way. The major fragrance compounds enriched in the direct liquid CO2 extract were methyl benzoate (11.5 ± 0.8%), phenyl ethyl alcohol (5.0 ± 0.6%), phenyl acetonitrile (10.4 ± 1.1%), indole (1.2 ± 0.3%), methyl anthranilate (1.3 ± 0.5%), E-β-ionone (1.5 ± 0.4%), and Z-methyl jasmonoate (1.0 ± 0.3%). The liquid CO2 fractionation of concrete is a practical process and the first fraction is comparable with direct liquid CO2 flower extract in terms of composition of the major compounds.  相似文献   

17.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil rich in omega-3 fatty acids (FAs) from chia seeds, and the physicochemical properties of the oil were determined. A central composite rotatable design was used to analyze the impact of temperature (40 °C, 60 °C and 80 °C), pressure (250 bar, 350 bar and 450 bar) and time (60 min, 150 min and 240 min) on oil extraction yield, and a response surface methodology (RSM) was applied. The extraction time and pressure had the greatest effects on oil. The highest oil yield was 92.8% after 300 min of extraction time at 450 bar. The FA composition varied depending on operating conditions but had a high content of α-linolenic acid (44.4-63.4%) and linoleic acid (19.6-35.0%). The rheological evaluation of the oils indicated a Newtonian behavior. The viscosity of the oil decreased with the increase in temperature following an Arrhenius-type relationship.  相似文献   

18.
The effects of supercritical carbondioxide extraction was investigated to compare previously validated extraction methods on total alkannin yield with Alkanna tinctoria collected form Antalya, Turkey. A two-step process was used; extraction of alkannin derivatives with supercritical CO2 followed by alkaline hydrolysis of alkannin derivatives. A Box-Behnken exprerimental design was used to evaluate the effect of three variables, pressure (50-350 bar), temperature (30-80 °C) and CO2 flow (5-20 g min−1) at 1:30 ratio of alkanna root:CO2 amount. Response surface analysis revealed that the data were adequately fitted to a second-order polynomial model with R2 0.9665 and the most effective variable was pressure (P ≤ 0.05). Optimum conditions were determined as 80 °C, 175 bar, 5 g min−1 CO2 flow yielding the highest total alkannins (1.47%) which was higher than conventional hexane extraction (1.24%) providing a solvent-free alternative for industrial production.  相似文献   

19.
Wen-Ju Xu 《Desalination》2009,249(1):139-256
The complexes of hydroxycitronellal (o-aminobenzoic acid) copper(II) (Cu(II)-HXAB) and salicylaldehyde (o-aminobenzoic acid) copper(II) (Cu(II)-SHAB) were used as neutral carriers in PVC-based membrane ion-selective electrodes. The electrode based on Cu(II)-HXAB exhibited near-Nernstian potential response to thiocyanate (SCN) in a linear range of 1.0 × 10− 6 to 1.0 × 10− 1 M with a detection limit of 8.5 × 10− 7 M and a slope of − 57.3 mV/decade in 0.01 M phosphate buffer solution (pH 5.0). The electrode exhibited high selectivity to SCN over other tested anions with an anti-Hofmeister selectivity sequence. The selectivity behavior might be discussed in terms of UV-Vis spectrum and infrared spectrum. The transfer process of thiocyanate across the membrane interface was investigated by making use of the AC impedance technique. The electrode containing Cu(II)-HXAB could be applied to thiocyanate analysis in waste water with satisfactory results.  相似文献   

20.
Supercritical carbon dioxide extraction to purify samples of model hydrocarbons (tetralin, decalin, and tetradecane) containing various aromatic sulfur compounds (benzothiophene, dibenzothiophene, and 4,6-dimethydibenzothiophene) was studied. The influence of extraction temperature and pressure was investigated for the extraction from a tetralin-dibenzothiophene system in the range of 293-353 K and 8-15 MPa, and it was found that the amount of tetralin extracted increased with an increase in carbon dioxide density, while the separation factor decreased with an increase in carbon dioxide density. High recovery and high separation factor values for the tetralin-dibenzothiophene system were obtained under 10 MPa at 313 K. Higher separation factor was obtained for tetralin than decalin and tetradecane, containing 4,6-dimethyldibenzothiophene than that containing dibenzothiophene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号