首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The contribution of right ventricular (RV) stimulation to cardiac resynchronisation therapy (CRT) remains controversial. RV stimulation might be associated with adverse haemodynamic effects, dependent on intrinsic right bundle branch conduction, presence of scar, RV function and other factors which may partly explain non-response to CRT. This study investigates to what degree RV stimulation modulates response to biventricular (BiV) stimulation in CRT candidates and which baseline factors, assessed by cardiac magnetic resonance imaging, determine this modulation.

Methods and results

Forty-one patients (24 (59 %) males, 67 ± 10 years, QRS 153 ± 22 ms, 21 (51 %) ischaemic cardiomyopathy, left ventricular (LV) ejection fraction 25 ± 7 %), who successfully underwent temporary stimulation with pacing leads in the RV apex (RVapex) and left ventricular posterolateral (PL) wall were included. Stroke work, assessed by a conductance catheter, was used to assess acute haemodynamic response during baseline conditions and RVapex, PL (LV) and PL+RVapex (BiV) stimulation.Compared with baseline, stroke work improved similarly during LV and BiV stimulation (∆+ 51 ± 42 % and ∆+ 48 ± 47 %, both p < 0.001), but individual response showed substantial differences between LV and BiV stimulation. Multivariate analysis revealed that RV ejection fraction (β = 1.01, p = 0.02) was an independent predictor for stroke work response during LV stimulation, but not for BiV stimulation. Other parameters, including atrioventricular delay and scar presence and localisation, did not predict stroke work response in CRT.

Conclusion

The haemodynamic effect of addition of RVapex stimulation to LV stimulation differs widely among patients receiving CRT. Poor RV function is associated with poor response to LV but not BiV stimulation.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-015-0770-x) contains supplementary material, which is available to authorized users.  相似文献   

2.
Lipoic acid is an essential coenzyme in the oxidation of pyruvate and -ketoglutarate. It is easily converted to its reduced form, dihydrolipoic acid (DHLA), in vivo thereby forming a redox pair. DHLA is important in the maintenance and integrity of specific neuronal and subcellular membranes. In the present study we investigated the effect of DHLA on the response of isolated rat bladder strips to repetitive field stimulation (FS), a method used to exhaust synaptic stores of acetylcholine resulting in nerve and synaptic damage.Isolated strips of rat urinary bladders were separated into 4 groups. Group 1 strips were incubated with choline + acetyl-CoA; Group 2 strips with choline, acetyl-CoA + DHLA; and Group 3 with DHLA. Group 4 strips were controls. All strips in Groups 1–3 were subjected to 2 h of repetitive FS followed by 2 h of recovery.DHLA had no effect on the progressive decrease in contractile response observed during repetitive stimulation. However, strips incubated in the presence of DHLA showed a significantly greater degree of recovery than strips incubated in the absence of DHLA. We believe that the protection of the contractile response is related to DHLA's ability to protect nerve and/or muscle membranes from oxidative damage.  相似文献   

3.
Transcranial magnetic stimulation (TMS) is a noninvasive method of activating or deactivating focal areas of the human brain. Repetitive TMS (rTMS) applied over the temporoparietal cortex has been reported to show therapeutic effects on tinnitus. We compared the effects of 1?Hz rTMS delivered either contralaterally or ipsilaterally to the symptomatic ear in patients with unilateral tinnitus. Forty patients with asymmetric hearing loss and non-pulsatile tinnitus localized to poorer ear of 6 months in duration or greater who were refractory to medication were enrolled in this study. Patients were assigned randomly to one of two treatment groups: with 1?Hz stimulation applied the temporoparietal junction either ipsilaterally (n?=?21) or contralaterally (n?=?19) to the symptomatic ear. The patients were given 600 pulses per session daily for 5?d. Changes in the tinnitus handicap inventory (THI) and self-rating visual analog scores (VAS) for loudness, awareness and annoyance were analyzed before, immediately after and 1 month after treatment. There was no significant difference in the rate of patients with marked improvement between ipsilateral and contralateral stimulation groups. In addition, there were no significant differences in the amount of decreases in THI scores and VAS between the two groups immediately or 1 month after rTMS. Finally, significant decreases in THI scores and most VAS were observed 1 month after rTMS in both groups compared to pretreatment. Daily treatment with 1?Hz rTMS ipsilaterally and contralaterally to the side of tinnitus both had significant beneficial effects. The laterality of stimulation with 1?Hz rTMS is not the decisive factor in relieving symptoms.  相似文献   

4.
The effects of adrenalectomy on cell calcium metabolism and on the effects of epinephrine on cAMP, phosphorylase a activity, and calcium efflux were studied in hepatocytes isolated from adult male and female rats. Adrenalectomy increased the total calcium of hepatocytes, all exchangeable calcium pools, and all calcium fluxes between the cellular pools in both sexes. After adrenalectomy, basal cAMP was elevated, phosphorylase a + b was decreased, but basal phosphorylase a activity was not changed. In adrenalectomized males and at all concentrations of epinephrine studied (1·10?8?1·10?5M) stimulation of calcium efflux was decreased and cAMP accumulation was enhanced, while the resulting phosphorylase a activation was depressed. In hepatocytes from adrenalectomized females there was a similar increase in cAMP accumulation induced by epinephrine, and a decrease in the stimulation of calcium efflux; however, the depression in phosphorylase a activation was much less and was significant only at 1·10?8 and 1·10?5M epinephrine. In the male, while activation of phosphorylase a shifted from a pure α-adrenergic response mediated by calcium to one also involving a cAMP-mediated β-adrenergic response, the contribution of the attenuated calcium signal was still significant. Hepatocytes from female rats did not show a comparable α- to β-shift, since the relative contribution of calcium and cAMP to phosphorylase activation was similar in sham-operated and adrenalectomized animals.  相似文献   

5.

Background

Reaction time for anti-saccade, in which the gaze is directed to the position opposite to an illuminated target, shortens during maintenance of neck flexion. The present study applied transcranial magnetic stimulation (TMS) to the frontal oculomotor field, and investigated the effect of maintaining neck flexion on information processing time in the anti-saccade neural pathway before the frontal oculomotor field.

Methods

The reaction time was measured with the chin resting on a stand (‘chin-on’ condition) and with voluntary maintenance of neck flexion (‘chin-off’ condition) at 80% maximal neck flexion angle, with and without TMS. The TMS timing producing the longest prolongation of the reaction time was first roughly identified for 10 ms intervals from 0 to 180 ms after the target presentation. Thereafter, TMS timing was set finely at 2 ms intervals from −20 to +20 ms of the 10 ms step that produced the longest prolongation.

Results

The reaction time without TMS was significantly shorter (21.9 ms) for the chin-off (235.9 ± 14.9 ms) than for the chin-on (257.5 ± 17.1 ms) condition. Furthermore, TMS timing producing maximal prolongation of the reaction time was significantly earlier (18.6 ms) for the chin-off than the chin-on condition. The ratio of the forward shift in TMS timing relative to the reduction in reaction time was 87.8%.

Conclusions

We confirmed that information processing time in the anti-saccade neural pathway before the frontal oculomotor field shortened while neck flexion was maintained, and that this reduction time accounted for approximately 88% of the shortening of reaction time.  相似文献   

6.
7.
Some epidemiological studies report a relationship between magnetic field exposure and such human diseases as leukemia and immune system disturbances. The few published studies on animals do not demonstrate field exposure-related alterations in hematologic and immune systems. The data presented here are part of a broader study designed to investigate the possible effects of acute exposure to a 50 Hz linearly polarized magnetic field (10 μT) on hematologic and immunologic functions. Thirty-two young men (20–30 years old) were divided into two groups (control group, i.e., sham-exposed, 16 subjects; exposed group, 16 subjects). All subjects participated in two 24 h experiments to evaluate the effects of both continuous and intermittent (1 h “off” and 1 h with the field switched “on” and “off” every 15 s) exposure to linearly polarized magnetic fields. The subjects were exposed to the magnetic field (generated by three Helmholtz coils per bed) from 23:00 to 08:00 while lying down. Blood samples were collected during each session at 3 h intervals from 11:00 to 20:00 and hourly from 22:00 to 08:00. No significant differences were observed between sham-exposed (control) and exposed men for hemoglobin concentration, hematocrit, red blood cells, platelets, total leukocytes, monocytes, lymphocytes, eosinophils, or neutrophils. Immunologic variables [CD3, CD4, CD8, natural killer (NK) cells and B cells] were unaltered. To our knowledge, this study is the first to document the effects of a 50 Hz magnetic field on the circadian rhythm of human hematologic and immune functions, and it suggests that acute exposure to either a continuous or an intermittent 50 Hz linearly polarized magnetic field of 10 μT, at least under the conditions of our experiment, does not affect either these functions or their circadian rhythms in healthy young men. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The effect of single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 1.2, 6 or 30 μg/kg i.p.) on primary humoral antibody production was studied in young adult C57 BL/6J mice. TCDD profoundly suppressed the primary response to thymus-dependent (sheep erythrocytes) and independent (type III pneumococcal polysaccharide) antigens. The inhibitory effect of TCDD was still detectable 42 days after treatment. In contrast, under these experimental conditions, in vitro lymphoproliferative responses to Concanavalin A (Con A) and bacterial lypopolysaccharides and the ability to mediate graft versus host reaction were not significantly affected per unit number of lymphoid cells.  相似文献   

9.
MDP, a synthetic muramyl dipeptide, is capable of increasing the primary in vitro antibody response, to sheep erythrocytes, of purified B cells restored with a monokine and helper T cell factors, including Interleukin 2 and the late-acting T cell replacing factor (TRF). First, the possibility that the adjuvanticity of MDP could be due to the elaboration of Interleukin 1, caused by its effect on macrophages, was excluded. In addition, a kinetic study showed that the effect of MDP was greater when added later, concomitantly with or one day after the helper T cell factors. Therefore, it appears that MDP acts directly on B cells, in a late stage of their differentiation to antibody-producing cells.  相似文献   

10.
11.
12.
Li R  Zheng W  Pi R  Gao J  Zhang H  Wang P  Le K  Liu P 《FEBS letters》2007,581(17):3311-3316
Activation of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) has been recently reported to inhibit vascular inflammatory response and prevent cardiac hypertrophy. However, it is unclear how the activation of PPAR-alpha regulates hypertrophic response. In the present study, we found that application of fenofibrate and overexpression of PPAR-alpha inhibited endothelin-1 (ET-1)-induced phosphorylation of protein kinase B (Akt) at Ser473 and glycogen synthase kinase3beta (GSK3beta) at Ser9, and prevented ET-1-induced nuclear translocation of NFATc4 in cardiomyocytes. Moreover, co-immunoprecipitation studies showed that fenofibrate strongly induced the association of nuclear factor of activated T cells (NFATc4) with PPAR-alpha. These results suggest that activation of PPAR-alpha inhibits ET-1-induced cardiac hypertrophy through regulating PI3K/Akt/GSK3beta and NFAT signaling pathways.  相似文献   

13.
Protein kinase A (PKA) substrate phosphorylation is facilitated through its co-localization with its signaling partner by A-kinase anchoring proteins (AKAPs). mAKAP (muscle-selective AKAP) localizes PKA and its substrates such as phosphodiesterase-4D3 (PDE4D3), ryanodine receptor, and protein phosphatase 2A (PP2A) to the sarcoplasmic reticulum and perinuclear space. The genetic role of mAKAP, in modulating PKA/PDE4D3 molecular signaling during cardiac diseases, remains unclear. The purpose of this study was to examine the effects of naturally occurring mutations in human mAKAP on PKA and PDE4D3 signaling. We have recently identified potentially important human mAKAP coding non-synonymous polymorphisms located within or near key protein binding sites critical to β-adrenergic receptor signaling. Three mutations (P1400S, S2195F, and L717V) were cloned and transfected into a mammalian cell line for the purpose of comparing whether those substitutions disrupt mAKAP binding to PKA or PDE4D3. Immunoprecipitation study of mAKAP-P1400S, a mutation located in the mAKAP-PDE4D3 binding site, displayed a significant reduction in binding to PDE4D3, with no significant changes in PKA binding or PKA activity. Conversely, mAKAP-S2195F, a mutation located in mAKAP-PP2A binding site, showed significant increase in both binding propensity to PKA and PKA activity. Additionally, mAKAP-L717V, a mutation flanking the mAKAP-spectrin repeat domain, exhibited a significant increase in PKA binding compared to wild type, but there was no change in PKA activity. We also demonstrate specific binding of wild-type mAKAP to PDE4D3. Binding results were demonstrated using immunoprecipitation and confirmed with surface plasmon resonance (Biacore-2000); functional results were demonstrated using activity assays, Ca2 + measurements, and Western blot. Comparative analysis of the binding responses of mutations to mAKAP could provide important information about how these mutations modulate signaling.  相似文献   

14.
Isabelle Cornez 《FEBS letters》2010,584(12):2681-2688
A variety of immunoregulatory signals to effector T cells from monocytes, macrophages and regulatory T cells act through cyclic adenosine monophosphate. In the effector T cell, the protein kinase A (PKA) type I isoenzyme localizes to lipid rafts during T cell activation and modulates directly the proximal events that take place after engagement of the T cell receptor. The most proximal target for PKA phosphorylation is C-terminal Src kinase (Csk), which initiates a negative signal pathway that fine-tunes the T cell activation process. The A kinase anchoring protein Ezrin colocalizes PKA and Csk by forming a supramolecular signaling complex consisting of PKA, Ezrin, Ezrin/radixin/moesin (ERM) binding protein of 50 kDa (EBP50), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (GEMs) (PAG) and Csk.  相似文献   

15.

Background

Modulated immune signal (CD14–TLR and TNF) in leishmaniasis can be linked to EGFR pathway involved in wound healing, through crosstalk points. This signaling network can be further linked to a synthetic gene circuit acting as a positive feedback loop to elicit a synchronized intercellular communication among the immune cells which may contribute to a better understanding of signaling dynamics in leishmaniasis.

Methods

Network reconstruction with positive feedback loop, simulation (ODE 15s solver) and sensitivity analysis of CD14–TLR, TNF and EGFR was done in SimBiology (MATLAB 7.11.1). Cytoscape and adjacency matrix were used to calculate network topology. PCA was extracted by using sensitivity coefficient in MATLAB. Model reduction was done using time, flux and sensitivity score.

Results

Network has five crosstalk points: NIK, IκB–NFκB and MKK (4/7, 3/6, 1/2) which show high flux and sensitivity. PI3K in EGFR pathway shows high flux and sensitivity. PCA score was high for cytoplasmic ERK1/2, PI3K, Atk, STAT1/3 and nuclear JNK. Of the 125 parameters, 20% are crucial as deduced by model reduction.

Conclusions

EGFR can be linked to CD14–TLR and TNF through the MAPK crosstalk points. These pathways may be controlled through Ras and Raf that lie upstream of signaling components ERK ½ (c) and JNK (n) that have a high PCA score via a synthetic gene circuit for activating cell–cell communication to elicit an inflammatory response. Also a disease resolving effect may be achieved through PI3K in the EGFR pathway.

General significance

The reconstructed signaling network can be linked to a gene circuit with a positive feedback loop, for cell–cell communication resulting in synchronized response in the immune cell population, for disease resolving effect in leishmaniasis.  相似文献   

16.
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB1 and CB2 G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.  相似文献   

17.
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.  相似文献   

18.
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids.  相似文献   

19.
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier.  相似文献   

20.
    
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2 +-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2 + binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号