首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first of a new class of objects now known as main belt comets (MBCs) or “activated asteroids” was identified in 1996. The seven known members of this class have orbital characteristics of main belt asteroids yet exhibit dust ejection like comets. In order to constrain their physical and orbital properties we searched the Thousand Asteroid Light Curve Survey (TALCS; Masiero, J.R., Jedicke, R., Durech, J., Gwyn, S., Denneau, L., Larsen, J. [2009]. Icarus 204, 145-171) for additional candidates using two diagnostics: tail and coma detection. This was the most sensitive MBC survey effort to date, extending the search from MBCs with H ∼ 18 (D ∼ 1 km) to MBCs as small as H ∼ 21 (D ∼ 150 m).We fit each of the 924 objects detected by TALCS to a PSF model incorporating both a coma and nuclear component to measure the fractional contribution of the coma to the total surface brightness. We determined the significance of the coma detection using the same algorithm on a sample of null detections of comparable magnitude and rate of motion. We did not identify any MBC candidates with this technique to a sensitivity limit on the order of cometary mass loss rate of about 0.1 kg/s.Our tail detection algorithm relied on identifying statistically significant flux in a segmented annulus around the candidate object. We show that the technique can detect tail activity throughout the asteroid belt to the level of the currently known MBCs. Although we did not identify any MBC candidates with this technique, we find a statistically significant detection of faint activity in the entire ensemble of TALCS asteroids. This suggests that many main belt asteroids are active at very low levels.Our null detection of MBCs allows us to set 90% upper confidence limits on the number distribution of MBCs as a function of absolute magnitude, semi-major axis, eccentricity, and inclination. There are ?400,000 MBCs in the main belt brighter than HV = 21 (∼150-m in diameter) and the MBC:MBA ratio is ?1:400.We further comment on the ability of observations to meaningfully constrain the snow line’s location. Under some reasonable and simple assumptions we claim 85% confidence that the contemporary snow line lies beyond 2.5 AU.  相似文献   

2.
As any comet nears the Sun, gas sublimes from the nucleus taking dust with it. Jupiter family comets are no exception. The neutral gas becomes ionized, and the interaction of a comet with the solar wind starts with ion pickup. This key process is also important in other solar system contexts wherever neutral particles become ionized and injected into a flowing plasma such as at Mars, Venus, Io, Titan and interstellar neutrals in the solar wind. At comets, ion pickup removes momentum and energy from the solar wind and puts it into cometary particles, which are then thermalised via plasma waves. Here we review what comets have shown us about how this process operates, and briefly look at how this can be applied in other contexts. We review the processes of pitch angle and energy scattering of the pickup ions, and the boundaries and regions in the comet-solar wind interaction. We use in-situ measurements from the four comets visited to date by spacecraft carrying plasma instrumentation: 21P/Giacobini-Zinner, 1P/Halley, 26P/Grigg-Skjellerup and 19P/Borrelly, to illustrate the process in action. While, of these, comet Halley is not a Jupiter class comet, it has told us the most about cometary plasma environments. The other comets, which are from the Jupiter family, give an interesting comparison as they have lower gas production rates and less-developed interactions. We examine the prospects for Rosetta at comet Churyumov-Gerasimenko, another Jupiter family comet where a wide range of gas production rates will be studied.  相似文献   

3.
The effects that a hypothetical trans-Plutonian planet would produce on theorbital distribution of the Classical Edgeworth-Kuiper-Belt, has beensurveyed for different physical and orbital parameters of the hypotheticalbody in Melita et al. (2003a). The best fits were obtained by a moderatelyeccentric and inclined Earth-sized object with a semimajor axis of ~ 70AU. However the history of some objects in the `Extended Scattered disk’still represent a puzzle. One possibility is that they can be `extracted’from the Scattered disk by the planetoid. In this work we confirm that such anhypothesis would not explain the present orbit of 2000 CR105, given theconditions for a gap as observed to be formed in the Classical EKB.  相似文献   

4.
To try to define specific physical properties of the dust of Jupiter-family comets (JFCs), we compare the light scattered by them. Amongst the more than 1000 JFCs, less than 200 are numbered, 40 of them being rather bright. In the present work we use data from the latter. In situ observations of three nuclei show low albedo surfaces. The albedo of the dust particles in the coma is low, with generally a red colour. The A(α) product is a measure of cometary activity and secular changes. Images of different regions (jets and fans) give indications on the nucleus rotation and position of the emitting areas, as compared to the position of the rotation axis. Differences in physical properties between the particles in different regions are pointed out by differences in the linear polarization of the scattered light and by spectral variations in brightness and polarization. Jupiter family comets are considered as dust-poor comets. Tails and trails’ studies give an estimation of the size distribution of the particles. However the dust production rates depend on the largest particles (up to centimetre size), which are mainly observed in the trails where large dark compact particles are found. These dark particles are also responsible for the high polarization in the inner most coma of some comets. The meaning, in terms of physical properties, of the linear polarization is discussed through different examples such as 2P/Encke, 9P/Tempel 1 or the fragments of 73P/Schwassmann-Wachmann 3. Cometary outbursts and splitting events show that the properties of the dust ejected from the interior of the nucleus are similar to the ones of more active comets (new or with larger semi-major axis).  相似文献   

5.
We estimate the total number and the slope of the size-frequency distribution (SFD) of dormant Jupiter family comets (JFCs) by fitting a one-parameter model to the known population. We first select 61 near-Earth objects (NEOs) that are likely to be dormant JFCs because their orbits are dynamically coupled to Jupiter [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J., Levison, H.F., Michel, P., Metcalfe, T.S., 2002a. Icarus 156, 399-433]. Then, from the numerical simulations of Levison and Duncan [1997. Icarus 127, 13-32], we construct an orbit distribution model for JFCs in the NEO orbital element space. We assume an orbit-independent SFD for all JFCs, the slope of which is our unique free parameter. Finally, we compute observational biases for dormant JFCs using a calibrated NEO survey simulator [Jedicke, R., Morbidelli, A., Spahr, T., Petit, J., Bottke, W.F., 2003. Icarus 161, 17-33]. By fitting the biased model to the data, we estimate that there are ∼75 dormant JFCs with H<18 in the NEO region and that the slope of their cumulative SFD is −1.5±0.3. Our slope for the SFD of dormant JFCs is very close to that of active JFCs as determined by Weissman and Lowry [2003. Lunar Planet. Sci. 34. Abstract 2003]. Thus, we argue that when JFCs fade they are likely to become dormant rather than to disrupt and that the fate of faded comets is size-independent. Our results imply that the size distribution of the JFC progenitors—the scattered disk trans-neptunian population—either (i) has a similar and shallow SFD or (i) is slightly steeper and physical processes acting on the comets in a size-dependent manner creates the shallower active comet SFD. Our measured slope, typical of collisionally evolved populations with a size-dependent impact strength [Benz, W., Asphaug, E., 1999. Icarus 142, 5-20], suggests that scattered disk bodies reached collisional equilibrium inside the protoplanetary disk prior to their removal from the planetary region.  相似文献   

6.
1 INTRODUCTION In the past years, we were thrilled to the reports of discoveries of many planets around stars.These planetary systems outside the solar system (if exist) provide not only an independenttest of the formation theory of the solar system but also a chance to search for extraterrestriallife in the universe. Many studies have been made to identify the particularities of these stars,among which spectroscopic studies (e.g. Gonzalez et al. 2001; Santos et al. 2001; Zhao etaL. 2001…  相似文献   

7.
We present a new catalog of absolute nuclear magnitudes of Jupiter family (JF) comets, which is an updated version of our previous catalog [Tancredi, G., Fernández, J.A., Rickman, H., Licandro, J., 2000. Astron. Astrophys. Suppl. Ser. 146, 73-90]. From the new catalog we find a linear cumulative luminosity function (CLF) of slope 0.54±0.05 for JF comets with q?2.5 AU. By considering this CLF combined with the few measured geometric albedos with their respective uncertainties, and assuming a canonical albedo of 0.035±0.012 for those comets with undetermined albedos, we derive a cumulative size distribution that follows a power-law of index −2.7±0.3. The slope is similar to that derived from some theoretical collisional models and from some populations of Solar System bodies like the trans-neptunian objects. We also discuss and compare our size distribution with those by other authors that have recently appeared in the literature. Some striking differences in the computed slopes are explained in terms of biases in the studied samples, the different weights given to the brightest members of the samples, and discrepancies in the values of a few absolute nuclear magnitudes. We also compute sizes and fractions of active surface area of JF comets from their estimated absolute nuclear magnitudes and their water production rates. With the outgassing model that we use, about 60% of the computed fractions f of active surface area are found to be smaller than 0.2, with one case (28P/Neujmin 1) of no more than 0.001, which suggests that JF comets may transit through stages of very low activity, or even dormancy. There is an indication that JF comets with radii RN?3 km have active fractions f?0.01, which might be due to the rapid formation of insulating dust mantles on larger nuclei.  相似文献   

8.
The stability of an imaginary planet located in the present main asteroid belt is studied with a 7-body model (Sun, Mars, Jupiter, Saturn, Uranus, Neptune and the imaginary planet). The fourth-order Hermite algorithm P(EC)3 is used, which has a very small secular energy error for the integration of periodic orbits with a constant time-step. The evolution of orbits is followed up to 108 years. Our numerical results show that the low-order resonances with Jupiter can enhance the stability of the imaginary planet in some cases. The survival probability of the imaginary planet decreases with the planet mass. The upper limit of the imaginary planet's mass that can survive in the main belt is around 1025 kg, i.e., about the Earth's mass.  相似文献   

9.
10.
Our goal is to determine whether or not the observed sudden termination of the Edgeworth-Kuiper belt can be the result of perturbations from a hypothetical planet. We investigate the effects that such an object would produce on the primordial orbital distribution if the trans-neptunian objects, for a range of masses and orbital parameters of the hypothetical planet. In this numerical investigation, the motion of the hypothetical planet was influenced by the existing planets but not by its interaction with the disk. We find that no set of parameters produce results that match the observed data. Dynamical interaction with the disk is likely to be important so that the orbit of the hypothetical planet changes significantly during the integration interval. This is also discussed. The overall conclusion is that none of the models for the hypothetical planet that were investigated can reproduce the observed features of the Edgeworth-Kuiper belt starting from any probable primordial distribution.  相似文献   

11.
12.
Of the currently over 300 identified Jupiter family comets (JFCs), we have estimated nucleus sizes and shapes for fewer than 70 and have detailed nucleus observations arising from spacecraft fly-bys for just 3: 19P/Borrelly (Deep Space 1), 81P/Wild 2 (Stardust), and 9P/Tempel 1 (Deep Impact). These observations reveal similarities but also significant diversity. In this review, we make a critical assessment of our knowledge of JFC nuclei and suggest a priority list for observations of the nucleus of the JFC, 67P/Churyumov-Gerasimenko, the Rosetta target comet.  相似文献   

13.
14.
We analyze our earlier data on the numerical integration of the equations of motion for 274 short-period comets (with the period P<200 yr) on a time interval of 6000 yr. As many as 54 comets had no close approaches to planets, 13 comets passed through the Saturnian sphere of action, and one comet passed through the Uranian sphere of action. The orbital elements of these 68 comets changed by no more than ±3 percent in a space of 6000 yr. As many as 206 comets passed close to Jupiter. We confirm Everhart’s conclusion that Jupiter can capture long-period comets with q = 4–6 AU and i < 9° into short-period orbits. We show that nearly parabolic comets cross the solar system mainly in the zone of terrestrial planets. No relationship of nearly parabolic comets and terrestrial planets was found for the epoch of the latest apparition of comets. Guliev’s conjecture about two trans-Plutonian planets is based on the illusory excess of cometary nodes at large heliocentric distances. The existence of cometary nodes at the solar system periphery turns out to be a solely geometrical effect.  相似文献   

15.
16.
We study the Jupiter family comet (JFC) population assumed to come from the Scattered Disk and transferred to the Jupiter’s zone through gravitational interactions with the Jovian planets. We shall define as JFCs those with orbital periods and Tisserand parameters in the range 2<T?3.1, while those comets coming from the same source, but that do not fulfill the previous criteria (mainly because they have periods ) will be called ‘non-JFCs’. We performed a series of numerical simulations of fictitious comets with a purely dynamical model and also with a more complete dynamical-physical model that includes besides nongravitational forces, sublimation and splitting mechanisms. With the dynamical model, we obtain a poor match between the computed distributions of orbital elements and the observed ones. However with the inclusion of physical effects in the complete model we are able to obtain good fits to observations. The best fits are attained with four splitting models with a relative weak dependence on q, and a mass loss in every splitting event that is less when the frequency is high and vice versa. The mean lifetime of JFCs with radii and is found to be of about 150-200 revolutions (∼. The total population of JFCs with radii within Jupiter’s zone is found to be of 450±50. Yet, the population of non-JFCs with radii in Jupiter-crossing orbits may be ∼4 times greater, thus leading to a whole population of JFCs + non-JFCs of ∼2250±250. Most of these comets have perihelia close to Jupiter’s orbit. On the other hand, very few non-JFCs reach the Earth’s vicinity (perihelion distances ) which gives additional support to the idea that JFCs and Halley-type comets have different dynamical origins. Our model allows us to define the zones of the orbital element space in which we would expect to find a large number of JFCs. This is the first time, to our knowledge, that a physico-dynamical model is presented that includes sublimation and different splitting laws. Our work helps to understand the role played by these erosion effects in the distribution of the orbital elements and lifetimes of JFCs.  相似文献   

17.
Except the old Jack Hills zircon crystals, it does not exit direct record of the first 500 Ma of the Earth history. Consequently, the succession of events that took place during this period is only indirectly known through geochemistry, comparison with other telluric planets, and numerical modelling. Just after planetary accretion several episodes were necessary in order to make life apparition and development possible and to make the Earth surface habitable. Among these stages are: the core differentiation, the formation of a magma ocean, the apparition of the first atmosphere, oceans and continents as well as the development of magnetic field and of plate tectonics. In the same time, Earth has been subject to extraterrestrial events such as the Late Heavy Bombardment (LHB) between 3.95 and 3.8 Ga. Since 4.4–4.3 Ga, the conditions for pre-biotic chemistry and appearance of life were already met (liquid water, continental crust, no strong meteoritic bombardment, etc...). This does not mean that life existed as early, but this demonstrates that all necessary conditions assumed for life development were already present on Earth.  相似文献   

18.
We report on Adaptive Optics observations of the satellite of Asteroid 121 Hermione with the ESO-Paranal UT4 VLT and the Keck AO telescopes. The binary system, belonging to the Cybele family, was observed during two observing campaigns in January 2003 and January 2004 aiming to confirm its trajectory and accurately determine its orbital elements. A precessing Keplerian model was used to describe the motion of S/2002 (121) 1. We find that the satellite of Hermione revolves at a=768±11 km from the primary in P=2.582±0.002 days with a roughly circular and prograde orbit (e=0.001±0.001, i=3±2° w.r.t. equator primary). These extensive astrometric measurements enable us to determine the mass of Hermione to be 0.54±0.03×1019 kg and its pole solution (λ0=1.5°±2.00, β0=10°±2.0 in ecliptic J2000). Additional Keck AO observations taken close to the asteroid opposition in December 2003 give us direct insight into the structure of the primary which presents a bilobated shape. Since the angular resolution is limited to the theoretical angular resolution of the telescope (43 mas corresponding to a spatial resolution of 80 km), two shape models (called snowman and peanut) are proposed based on the images which were deconvolved with MISTRAL deconvolution process. Assuming a purely synchronous orbit and knowing the mass of the primary, the peanut shape composed of two separated components is quite unlikely. Additionally the J2 calculated from the analysis of the secondary orbit is not in agreement with the peanut model, but close to the snowman shape. The bulk density of the primary as derived from the observed size of the snowman shape is estimated to ρ∼1.8±0.2 g/cm3 implying a porosity ∼14% for this C-type asteroid, corresponding to a fractured asteroid. Considering the IRAS diameter, the density is lower (ρ=1.1±0.3 g/cm3) leading to a high porosity (p=30-60%) with a nominal value of p=48%, which indicates a completely loose rubble-pile structure for the primary. Further work is necessary to better constrain the size, shape, and then internal structure of Hermione's primary.  相似文献   

19.
Variance component estimation (VCE) is applied to precise orbit determination (POD) of the ERS-2 satellite. Twenty 5-day long arcs in the early three months in 1998 were calculated using the SLR and PRARE data. In the data the adjacent arcs overlap for two days except the intervals for orbit maneuver. The effect of VCE orbit determination on the calculation is investigated by an analysis of residuals and comparison of overlapping arcs, and the mean a posteriori standard deviation of each group of measured residuals is given. It is shown by the residuals analysis that the fitting of the measurements is significantly improved by VCD. However, according to Abbey criterion, VCD is not able to eliminate the systematic errors due to errors in the dynamic and geometric models. The results of the comparison of the overlapping arcs show that (1) VCE reduces the mean range deviation of overlapping arcs, especially where there are obviously unreasonable deviations, so that the orbit obtained has a more uniform precision; (2) By using VCE, adjacent arcs tend to close up and this is more apparent in the transverse direction. From the mean a posteriori standard error of each group of measurements, it can be seen that as far as the single normal point measurement is concerned, the data of some SLR stations are more important than other measurements in POD calculation. Generally speaking, determination of weighting by using VCE is more reasonable than by using initial standard deviation.  相似文献   

20.
The process of comet formation through the hierarchical aggregation of originally submicron-sized interstellar grains to form micron-sized particles and then larger bodies in the protoplanetary disc, culminating in the formation of planetesimals in the disc extending from Jupiter to beyond Neptune, is briefly reviewed. The planetesimal theory for the origin of comets implies the existence of distinct cometary reservoirs, with implications for the immediate provenance of observed comets (both long-period and short-period) and their evolution as a result of planetary perturbations and physical decay, for example splitting and sublimation. The principal mode of cometary decay and collisional interaction with the terrestrial planets is through the formation and evolution of streams of cometary debris and hitherto undiscovered families of cometary asteroids. Recent dynamical results, in particular the sungrazing and sun-colliding end-state for short-period comet and asteroid orbits, are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号