首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerosol water content was determined from relative humidity controlled optical particle counter (ASASP-X) size distribution measurements made during the Southeastern Aerosol and Visibility Study (SEAVS) in the Great Smoky Mountains National Park during summer 1995. Since the scattering response function of the ASASP-X is sensitive to particle refractive index, a technique for calibrating the ASASP-X for any real refractive index was developed. A new iterative process was employed to calculate water mass concentration and wet refractive index as functions of relative humidity. Experimental water mass concentrations were compared to theoretically predicted values assuming only ammonium sulfate compounds were hygroscopic. These comparisons agreed within experimental uncertainty. Estimates of particle hygroscopicity using a rural aerosol model of refractive index as a function of relative humidity demonstrated no significant differences from those made with daily varying refractive index estimates. Although aerosol size parameters were affected by the assumed chemical composition, forming ratios of these parameters nearly canceled these effects.  相似文献   

2.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

3.
A PM10 monitoring network was established throughout the South Coast Air Basin (SOCAB) in the greater Los Angeles region during the calendar year 1986. Annual average PM10 mass concentrations within the Los Angeles metropolitan area ranged from 47.0 µg m-3 along the coast to 87.4 µg m-3 at Rubldoux, the furthest inland monitoring station. Measurements made at San Nicolas Island suggest that regional background aerosol contributes between 28 to 44 percent of the PM10 aerosol at monitoring sites In the SOCAB over the long term average. Five major aerosol components (carbonaceous material, NO- 3, SO= 4, NH+ 4, and soil-related material) account for greater than 80 percent of the annual average PM10 mass at all on-land monitoring stations. Peak 24-h average mass concentrations of nearly 300 µg m-3 were observed at inland locations, with lower peak values (?130–150 µg m-3) measured along the coast. Peak-day aerosol composition was characterized by increased NO- 3 Ion and associated ammonium ion levels, as compared to the annual average. There appears to be only a weak dependence of PM10 mass concentration on season of the year. This lack of a pronounced seasonal dependence results from the complex and contradictory seasonal variations in the major chemical components (carbonaceous material, nitrate, sulfate, ammonium ion and crustal material). At most sites within the Los Angeles metropolitan area, PM10 mass concentrations exceeded both the annual and 24-h average federal and state of California PM10 regulatory standards.  相似文献   

4.
This paper presents an overview of a major, long-term program for tropospheric gas and aerosol research in the southeastern United States. Building on three existing ozone (O3)-focused research sites begun in mid-1992, the Southeastern Aerosol Research and Characterization Study (SEARCH) was initiated in mid-1998 as a 7-year observation and research program with a broader focus including aerosols and an expanded geographical coverage in the Southeast. The monitoring network comprises four urban-rural (or urban-suburban) site pairs at locations along the coast of the Gulf of Mexico and inland, including two moderately sized and two major urban areas (Pensacola, FL; Gulfport, MS; Atlanta, GA; and Birmingham, AL). The sites are equipped with an extensive suite of instruments for measuring particulate matter (PM), gases relevant to secondary O3 and the production of secondary aerosol particles, and surface meteorology. The measurements taken to date have added substantially to the knowledge about the temporal behavior and geographic variability of tropospheric aerosols in the Southeast. Details are presented in four papers to follow.  相似文献   

5.
As part of a study examining the technical basis for a secondary national ambient air quality standard for fine particulate matter to protect visibility, we reviewed available data on atmospheric aerosol and visibility in the eastern U.S. This paper presents the results of that visibility and aerosol characterization.

Analysis of airport visibility data indicates that the annual median visual ranges in the East are in the 16-25 km range. In the absence of a "reference method," limited measurements of visibility using various types of instruments provide data generally in agreement with the airport visibility estimates when a contrast threshold of 0.05 is assumed in calculating visual range from the instrumental measurements.

Both long- and short-term aerosol measurements have yielded consistent results; however, because of the differences in instrumentation and laboratory analytical techniques among various studies, data often are not directly comparable. The measured annual average fine particulate matter mass concentration is about 18 μg/m3 in the rural East; during summer it increases to about 23 μg/m3. If all the sulfur in the fine mass is assumed to exist as ammonium sulfate, it would constitute 46 percent of the annual mean and about 60 percent of the summer mean fine mass concentrations. Carbon and volatiles, including water, are believed to constitute significant fractions of the fine mass; however, there are little data quantifying their contributions to fine mass and visibility impairment. Additional long-term measurements of visibility and fine aerosol and its various components are necessary to completely characterize visibility and aerosol in the East.  相似文献   

6.
Abstract

A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2 , and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park.

The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag “local” sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65–86%) and a small fraction (19–31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.  相似文献   

7.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty.  相似文献   

8.
Under the auspices of Project METROMEX, studies of visibility de-teoration downwind of St. Louis were conducted during July-August 1974-1975. Estimates of horizontal visual range, standard meteorological data, and aerosol characteristics within the mixing layer were acquired upwind, over, and downwind of the metropolitan area by means of airborne transects. Aerosol number, surface, and volume distributions for particles between 0.025-2.5 µm were generated from the airborne measurement of Aitken nucleus concentrations, cloud condensation nuclei, and aerosols detected in situ with optical probes. Visibility reduction amounting to 50% of prevailing regional upwind visibilities consistently occurs at a distance corresponding to 2-3 hours travel time downwind for an air parcel moving with the mean transport wind. The regions of visibility minimum do not coincide with locations of maximum Aitken nucleus concentrations, but rather correspond in space and time to increased values of cloud condensation nuclei and increased numbers of particles in the 0.1-2.5 µm diameter range. Comparisons of observed aerosol evolution with similar laboratory studies suggest that most of the light scattering aerosols are of secondary origin.  相似文献   

9.
Abstract

Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 μm, corresponding with the wavelength region of visible light, which accounted for ~72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein.  相似文献   

10.
Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 degrees C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO4(2-) via reduction to SO2; (2) NH4+ and NO3- via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption, (4) total carbon by combustion to CO2, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured "other" category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO2 conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH3 to the formation of ammonium nitrate in particulate matter (PM) is demonstrated.  相似文献   

11.
Abstract

Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 °C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO4 2? via reduction to SO2; (2) NH4 + and NO3 ? via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption, (4) total carbon by combustion to CO2, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured “other” category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO2 conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH3 to the formation of ammonium nitrate in particulate matter (PM) is demonstrated.  相似文献   

12.
ABSTRACT

The Nested Grid Model (NGM) is a primitive-equation meteorological model that is routinely exercised over North America for forecasting purposes by the National Meteorological Center. While prognostic meteorological models are being increasingly used to drive air quality models, their use in conducting annual simulations requires significant resources. NGM estimates of wind fields and other meteorological variables provide an attractive alternative since they are typically archived and readily available for an entire year. Preliminary evaluation of NGM winds during the summer of 1992 for application to the region surrounding the Grand Canyon National Park showed serious shortcomings. The NGM winds along the borders between California, Arizona and Mexico tend to be northwesterly with a speed of about 6 m/sec, while the observed flow is predominantly southerly at about 2-5 m/sec. The mesoscale effect of a thermal low pressure area over the highly heated Southern California and western Arizona deserts does not appear to be represented by the NGM because of its coarse resolution and the use of sparse observations in that region. Tracer simulations and statistical evaluation against special high resolution observations of winds in the southwest United States clearly demonstrate the northwest bias in NGM winds and its adverse effect on predictions of an air quality model. The “enhanced” NGM winds, in which selected wind observations are incorporated in the NGM winds using a diagnostic meteorological model provide additional confirmation on the primary cause of the northwest bias. This study has demonstrated that in situations where limited resources prevent the use of prognostic meteorological models, previously archived coarse resolution wind fields in which additional observations are incorporated to correct known biases provide an attractive option.  相似文献   

13.
Abstract

The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998–1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10–2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999–2003) of filter-based PM2.5 and PM10–2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 µg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 µg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3–7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for ≥60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components (“other”) account for ≥80% of PM10–2.5 mass. Limited data suggest that much of the unidentified mass in PM10–2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and “other.” Annual means for PM2.5 and PM10–2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999–2003 period (10–20% in the case of PM2.5, dominated by 14–20% declines in sulfate and 11–26% declines in OM, and 14–25% in the case of PM10–2.5, dominated by 17–30% declines in MMO and 14–31% declines in “ other”). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   

14.
The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998-1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10-2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999-2003) of filter-based PM2.5 and PM10-2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 microg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 microg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3-7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for approximately 60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components ("other") account for > or = 80% of PM10-2.5 mass. Limited data suggest that much of the unidentified mass in PM10-2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and "other." Annual means for PM2.5 and PM10-2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999-2003 period (10-20% in the case of PM2.5, dominated by 14-20% declines in sulfate and 11-26% declines in OM, and 14-25% in the case of PM10-2.5, dominated by 17-30% declines in MMO and 14-31% declines in "other"). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   

15.
16.
Abstract

The impact of various atmospheric transport directions on ambient fine particle (PM2.5) concentrations at several sites in southeastern Canada was estimated (for May-September) using back-trajectory analysis. Three-day back trajectories (four per day) were paired with 6-hr average PM2.5 mass concentrations measured using tapered element oscillating microbalances (TEOM). PM2.5 concentrations at rural locations in the region were affected by nonlocal sources originating in both Canada and the United States. Comparison of sites revealed that, on average, the local contribution to total PM2.5 in the greater Toronto area (GTA) is approximately 30–35%. At each location, average PM2.5 concentrations under south/southwesterly flow conditions were 2–4 times higher than under the corresponding northerly flow conditions. The chemical composition of both urban and rural PM2.5 was determined during two separate 2-week spring/summer measurement campaigns. Components identified included SO4 2?, NO3 ?, NH4+, black carbon and organic carbon (OC), and trace elements. Higher particle mass at the urban Toronto site was composed of a higher proportion of all components. However, black carbon, NO3 ?, NaCl, and trace elements were found to be the most enriched over the rural/regional background levels.  相似文献   

17.
Visibility trends in Korea during the past two decades   总被引:1,自引:0,他引:1  
Temporal trends and spatial distributions of visibility measured by the human eye over 60 stations in Korea between 1980 and 2000 are analyzed and discussed. Generally, visibility is lowest on winter mornings and highest on summer afternoons throughout Korea. Visibility in Seoul is now in an increasing trend while it has decreased nationwide, especially in clean coastal areas. Spatial distribution of visibility in the 1990s was related negatively to that of relative humidity (RH). However, visibility generally decreased despite an overall decrease in RH throughout the country. Air pollutants should have played a role in this dissonant variation, particularly in relatively clean areas and on summer afternoons. It was interpreted that the visibility increase in major metropolitan areas, including the greater Seoul area, in the 1990s was caused mainly by the reduction in pollutant emissions by rigorous government policy. But the effect of the emission reduction was manifested with decreasing RH.  相似文献   

18.
Abstract

Temporal trends and spatial distributions of visibility measured by the human eye over 60 stations in Korea between 1980 and 2000 are analyzed and discussed. Generally, visibility is lowest on winter mornings and highest on summer afternoons throughout Korea. Visibility in Seoul is now in an increasing trend while it has decreased nationwide, especially in clean coastal areas. Spatial distribution of visibility in the 1990s was related negatively to that of relative humidity (RH). However, visibility generally decreased despite an overall decrease in RH throughout the country. Air pollutants should have played a role in this dissonant variation, particularly in relatively clean areas and on summer afternoons. It was interpreted that the visibility increase in major metropolitan areas, including the greater Seoul area, in the 1990s was caused mainly by the reduction in pollutant emissions by rigorous government policy. But the effect of the emission reduction was manifested with decreasing RH.  相似文献   

19.
Positive matrix factorization (PMF) and effective variance (EV) solutions to the chemical mass balance (CMB) were applied to PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) mass and chemically speciated measurements for samples taken from 2008 to 2010 at the Atlanta, Georgia, and Birmingham, Alabama, sites. Commonly measured PM2.5 mass, elemental, ionic, and thermal carbon fraction concentrations were supplemented with detailed nonpolar organic speciation by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Source contribution estimates were calculated for motor vehicle exhaust, biomass burning, cooking, coal-fired power plants, road dust, vegetative detritus, and secondary sulfates and nitrates for Atlanta. Similar sources were found for Birmingham, with the addition of an industrial source and the separation of biomass burning into open burning and residential wood combustion. EV-CMB results based on conventional species were qualitatively similar to those estimated by PMF-CMB. Secondary ammonium sulfate was the largest contributor, accounting for 27–38% of PM2.5, followed by biomass burning (21–24%) and motor vehicle exhaust (9–24%) at both sites, with 4–6% of PM2.5 attributed to coal-fired power plants by EV-CMB. Including organic compounds in the EV-CMB reduced the motor vehicle exhaust and biomass burning contributions at both sites, with a 13–23% deficit for PM2.5 mass. The PMF-CMB solution showed mixing of sources within the derived factors, both with and without the addition of speciated organics, as is often the case with complex source mixtures such as those at these urban-scale sites. The nonpolar TD-GC/MS compounds can be obtained from existing filter samples and are a useful complement to the elements, ions, and carbon fractions. However, they should be supplemented with other methods, such as TD-GC/MS on derivitized samples, to obtain a wider range of polar compounds such as sterols, sugars, and organic acids. The PMF and EV solutions to the CMB equations are complementary to, rather than replacements for, each other, as comparisons of their results reveal uncertainties that are not otherwise evident.

Implications:?Organic markers can be measured on currently acquired PM2.5 filter samples by thermal methods. These markers can complement element, ion, and carbon fraction measurements from long-term speciation networks. Applying the positive matrix factorization and effective variance solutions for the chemical mass balance equations provides useful information on the accuracy of the source contribution estimates. Nonpolar compounds need to be complemented with polar compounds to better apportion cooking and secondary organic aerosol contributors.  相似文献   

20.
Representative PM2.5 and PM10 source emissions were sampled in Texas during the Big Bend Regional Aerosol Visibility and Observa (BRAVO) study. Chemical source profiles for elements, ions, and carbon fractions of 145 samples are reported for paved and unpaved road dust, soil dust, motor vehicle exhaust, vegetative burning, four coal-fired power stations, an oil refinery catalytic cracker, two cement kilns, and residential meat cooking. Several samples were taken from each emitter and source type, and these were averaged by source type, and in source subgroups based on commonality of chemical composition. The standard deviation represents the variability of the chemical mass fractions. BRAVO profiles differed in some respects from profiles measured elsewhere. High calcium abundances in geological dust, high selenium abundances in coal-fired power stations, and high antimony abundances in oil refinery catalytic cracker emissions were found. Abundances of eight thermally evolved carbon fractions [Atmos. Environ. 28 (15) (1994) 2493] differ among combustion sources, and a Monte Carlo simulation demonstrates that these differences are sufficient to differentiate among several carbon-emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号