首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Lake sediments contain archives of past environmental conditions in and around water bodies and stable isotope analyses (δ13C and δ15N) of sediment cores have been used to infer past environmental changes in aquatic ecosystems. In this study, we analyzed organic matter (OM), carbon (C), nitrogen (N), phosphorus (P), and δ13C and δ15N values in sediment cores from three subtropical lakes that span a broad range of trophic state. Our principal objectives were to: (1) evaluate whether nutrient concentrations and stable isotope values in surface deposits reflect modern trophic state conditions in the lakes, and (2) assess whether stratigraphic changes in the measured variables yield information about shifts in trophic status through time, or alternatively, diagenetic changes in sediment OM. Three Florida (USA) lakes of very different trophic status were selected for this study. Results showed that both δ13C and δ15N values in surface sediments of the oligo-mesotrophic lake were relatively low compared to values in surface sediments of the other lakes, and were progressively lower with depth in the sediment core. Sediments of the eutrophic lake had δ13C values that declined upcore, whereas δ15N values increased toward the sediment surface. The eutrophic lake displayed δ13C values intermediate between those in the oligo-mesotrophic and hypereutrophic lakes. Sediments of the hypereutrophic lake had relatively higher δ13C and δ15N values. In general, we found greater δ13C and δ15N values with increasing lake trophic state.  相似文献   

2.
We used elemental carbon, nitrogen, phosphorus and hydrogen ratios (C/N, N/P and H/C) with total organic carbon (TOC) and total phosphorus (TP) as well as stable carbon and nitrogen isotopes (δ13C and δ15N) to investigate the source and depositional conditions of organic matter in sediments from Zeekoevlei, the largest freshwater lake in South Africa. Typical C/N (10–12), H/C ratios (≥1.7) and δ13Corganic values (−22 to −19‰) together with the increase in TOC concentration indicate elevated primary productivity in lower middle (18–22 cm) and top (0–8 cm) sections of the sediment cores. Seepage of nutrients from a nearby waste water treatment plant, rapid urbanization and heavily fertilized farming in the catchments are responsible for the increased productivity. Consistent with this, measured δ15Norganic values (∼11‰) indicate increased raw sewage input towards the top-section of the core. Although cyanobacterial blooms are evident from the low δ15N values (∼3‰) in mid-section of the core, they did not outnumber the phytoplankton population. Low N/P ratio (∼0) and high TP (100–2,200 mg l−1) support cyanobacterial growth under N limited condition, and insignificant input of macrophytes towards the organic matter pool. Dredging in 1983, caused sub-aerial exposure of the suspended and surface sediments, and affected organic matter preservation in the upper mid-section (12–14 cm) of the core.  相似文献   

3.
Maar lakes in the Auckland Volcanic Field are important high-resolution archives of Holocene environmental change in the Southern Hemisphere mid-latitudes. Stable carbon and nitrogen isotope analyses were applied on bulk organic matter and the green alga Botryococcus from a sediment core from Lake Pupuke (Auckland, North Island, New Zealand) spanning the period since 7,165?cal.?year BP. The origin of organic matter was established using total-organic?Ccarbon-to-nitrogen ratios (TOC/TN) as well as organic carbon (??13COM) and nitrogen (??15N) isotope composition of potential modern sources. This approach demonstrated that the contribution of allochthonous organic matter to the lake sediment was negligible for most of the record. The sedimentary TOC/TN ratios that are higher than Redfield ratio (i.e. >7) are attributed to N-limiting conditions throughout the record. Variations of nitrogen and carbon isotopes during the last 7,165?years are interpreted as changes in the dominant processes in the lake. While epilimnetic primary productivity controlled isotope composition before 6,600?cal.?year BP, microbial processes, especially denitrification and methane oxidation, caused overall shifts of the ??15N and ??13C values since the Mid-Holocene. Comparisons with climate reconstructions from the Northern Island suggest that changes in the wind-induced lake overturn and a shift to more pronounced seasonality were the most likely causes for lake-internal changes since 6,600?cal.?year BP.  相似文献   

4.
Analysis of 18Ocellulose, 13Corganic matter, and 13Ccellulose at about 100 year intervals from organic matter deposited in Toronto Lake, Northwest Territories, Canada, revealed an 8000-year history of rapid, post-glacial hydrologic change at the treeline zone. Several mid-Holocene phases of enriched 13Corg and 13Ccell, caused by elevated lake productivity, declining [CO2(aq)], and closed basin conditions, were abruptly terminated by intervals of open hydrology recorded by sharply depleted 18Ocell. Two of these events, at 5000 and 4500 BP, are correlated with increased total organic content and Picea mariana pollen concentration, which indicate that high levels of productivity were also accompanied by northern treeline advances. A third treeline advance at about 2500 BP is also marked by an apparent outflow event from Toronto Lake, but this was not associated with 13Corg/cell enrichment in the sediment record because rapid and substantial lake water renewal probably prevented productivity-driven enrichment of the dissolved inorganic carbon and replenished the CO2(aq) supply to thriving phytoplankton. However, high sediment organic content during this period suggests increased productivity. Increases in the inflow:evaporation ratio at about 6500 and 3500 BP were also sufficient to cause Toronto Lake to overflow but the prevailing climate during these periods apparently did not favour appreciable northward treeline migration or changes in lake productivity.This is the 14th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers  相似文献   

5.
Journal of Paleolimnology - We measured stable isotopes (δ18O and δ13C) in Sphagnum cellulose that was extracted from a long peat core drilled in the ombrotrophic Mohos peat bog, Ciomadul...  相似文献   

6.
7.
Profiles of percent carbon and nitrogen, carbon/nitrogen (C/N) ratios and stable carbon (13C), and nitrogen (15N) isotopic ratios in organic matter from an 11.6 m core were used to reconstruct environments of deposition in the Swan Lake basin during the past 5300 YBP. The upper 6.5 m consisted of gyttja containing variable amounts of reddish brown-colored fine organic matter and calcium carbonate. It was followed by a 0.5 m sandy silt, which was followed by a 3.6 m reduced layer characterized by large quantities of black organic plant remains, sapropel, and then by another sapropel layer consisting mainly of well-sorted sapropelic sand with relatively low organic matter content. The C- and N-contents in the organic matter in the sediment profile ranged from 0.5 to 23% and from 0.02 to 2%, respectively. Carbon content were positively correlated to both N and clay content while carbon content was negatively correlated to sand content. Two major environmental phases in Swan Lake were apparent from large differences in the C and N data of the sediment organic matter. These include the sapropel (marsh) stage that stretched from approximately 5330 to 3930 YBP, and the following gyttja (open water stage). During the sapropel marsh plants identified in a previous pollen study as cattails and sedges proliferated and produced copious amounts of well-preserved organic matter. C/N ratios, 13C values, and 15N values in the sapropel were significantly different from those that characterized organic matter in the gyttja. During the gyttja 13C values indicated that deep primary producers have dominated lake biomass. By utilizing bicarbonate as their C-source, the accumulating biomass became relatively enriched 13C values. The presence of high sediment CaCO3 contents indicated more alkaline and deeper water conditions prevailed during the gyttja. Further refinement of the data suggested that each major phase initially contained an identifiable transition stage. During the sapropelic (initial marsh stage) which occurred before 5330 YBP, sand content gradually decreased as organic matter increased. As reflected by high C/N ratios and slightly enriched 13C values, these sands appear to have contained sufficient permeability to promote partial mineralization of accumulated organic-N containing compounds. A short initial gyttja transition period from about 3930–3830 YBP occurred in which the sediment silt content was anomalously high relative that measured in the surrounding layers. The silt content suggests that this turbid transition layer can not be completely explained by sediment mixing via bioturbation. The silts appeared to have been associated with the sharp climate change that resulted in higher water-table conditions during the gyttja stage.  相似文献   

8.
The stable carbon isotope composition, expressed as δ13C values, of chitinous resting stages of planktivorous invertebrates can provide information on past changes in carbon cycling in lakes. For example, the δ13C values of cladoceran ephippia and bryozoan statoblasts have been used to estimate the past contribution of methane-derived carbon to lake food webs and variations in the δ13C value of planktonic algae. Limited information, however, is available concerning seasonal variations in δ13C values of these organisms and their resting stages. We measured the seasonal variation in δ13C values of Daphnia (Branchiopoda: Cladocera: Daphniidae) and their floating ephippia over a 2-year period in small, dimictic Lake Gerzensee, Switzerland. Floating ephippia of Ceriodaphnia (Branchiopoda: Cladocera: Daphniidae) and statoblasts of Plumatella (Phylactolaemata: Plumatellida: Plumatellidae) were analysed during parts of this period. Furthermore, δ13C values of remains from all three organism groups were analysed in a 62-cm-long sediment core. Throughout the year, Daphnia δ13C values tracked the δ13C values of particulate organic matter (POM), but were more negative than POM, indicating that Daphnia also utilize a relatively 13C-depleted carbon source. Daphnia ephippia δ13C values did not show any pronounced seasonal variation, suggesting that they are produced batch-wise in autumn and/or spring and float for several months. In contrast, δ13C values of Ceriodaphnia ephippia and Plumatella statoblasts followed variations in δ13CPOM values, Ceriodaphnia values being the most negative of the resting stages. Average cladoceran ephippia δ13C values in the flotsam agreed well with ephippia values from Gerzensee surface sediments. In contrast, average Plumatella statoblast δ13C values from the flotsam were 4‰ more negative than in the surface sediments. In the sediment core, δ13C values of the two cladocerans remained low (mean ?39.0 and ?41.9‰) throughout the record. In contrast, Plumatella had distinctly less negative δ13C values (mean ?32.0‰). Our results indicate that in Gerzensee, Daphnia and Ceriodaphnia strongly relied on a 13C-depleted food source throughout the past 150 years, most likely methane-oxidising bacteria, whereas this food source was not a major contribution to the diet of bryozoans.  相似文献   

9.
Multivariate numerical analyses (DCA, CCA) were used to study the distribution of chironomids from surface sediments of 100 lakes spanning broad ecoclimatic conditions in northern Swedish Lapland. The study sites range from boreal forest to alpine tundra and are located in a region of relatively low human impact. Of the 19 environmental variables measured, ordination by CCA identified mean July air temperature as one of the most significant variables explaining the distribution and the abundance of chironomids. Lossonignition (LOI), maximum lake depth and mean January air temperature also accounted for significant variation in chironomid assemblages. A quantitative transfer function was created to estimate mean July air temperature from sedimentary chironomid assemblages using weightedaveraging partial least squares regression (WAPLS). The coefficient of determination was relatively high (r2 = 0.65) with root mean squared error of prediction (RMSEP, based on jack-knifing) of 1.13 °C and maximum bias of 2.1 °C, indicating that chironomids can provide useful quantitative estimates of past changes in mean July air temperature. The paper focuses mainly on the relationship between chironomid composition and July air temperature, but the relationship to LOI and depth are also discussed.  相似文献   

10.
Elemental and isotopic compositions of organic matter in surficial sediments from five transects across Lagoa do Caçó (Brazil) were analyzed to identify the depth-related processes that affect the production and deposition of sedimentary organic matter in this shallow tropical lake. Each of four transverse transects began at a margin dominated by aquatic macrophytes (Eleocharis), crossed the central deep part of the lake, and terminated in the opposite, macrophyte-dominated margin. In each transect, TOC concentrations, C/N ratios, and δ13C values decreased between 0 and 4 m, whereas δ15N values increased. The variables remained stable in sediment from 4 m water depth to the center of the lake at 10 m. The depth-related patterns reflect differences in both the delivery and the deposition of organic matter in the lake. Organic matter is produced in abundance in the marginal area by emersed and submerged macrophyte vegetation that diminishes with depth and disappears at 4 meters. After the disappearance of macrophytes, organic matter is produced at low rates principally by open-lake phytoplankton. Drawdown of dissolved oxygen is high in the lake margins, but it is low in the oligotrophic open waters of the lake. Preservation of organic matter is consequently better in sediments of the lake margins than in deep waters. The depth-related pattern of organic matter delivery and deposition in the sediments of Lagoa do Caçó, in which water levels are sensitive to groundwater fluctuations, shows that the elemental and isotopic compositions of sediment organic matter can provide a record of changes in the paleohydrology of this and other similar shallow lake systems.  相似文献   

11.
Stable isotope analyses on cladoceran subfossil exoskeletons retrieved from sediment cores could allow the reconstruction of past changes in lake food webs provided the δ13C and δ15N values of the exoskeletons reflect those of the organisms’ whole body. The relationships between the C and N stable isotope compositions of the exoskeletons and those of the whole body were investigated for two freshwater cladoceran taxa (Bosmina sp. and Daphnia sp.) from modern samples. The C and N stable isotope compositions of the exoskeleton and those of the whole body were strongly correlated. Exoskeleton δ13C was similar to the whole body δ13C for both taxa. Daphnia exoskeletons were strongly depleted in 15N (−7.9‰) compared to the whole body. Stable isotope analyses were thereafter performed on cladoceran remains from five downcore samples from Lake Annecy, France. Results showed that Bosmina δ15N values increased by more than 4‰, between the early twentieth and twenty first centuries. Such changes might be the result of changes in nitrogen sources or cycling in the lake and/or of major shifts in Bosmina trophic position within the lake food web. This study sets up the potential of stable isotope analyses performed on cladoceran subfossil remains for paleo-ecological purposes.  相似文献   

12.
We inferred past climate conditions from the δ13C and δ15N of organic matter (OM) in a sediment core (DP-2011-02) from the sub-alpine Daping Swamp, in the western Nanling Mountains, South China. In the study region, a 1000-m increase in altitude results in a ~0.75‰ decrease in δ13C and a ~2.2‰ increase in δ15N. Organic carbon stable isotope (δ13C) values of the dominant modern vegetation species, surface soils, and the core samples taken in the swamp exhibit a strong terrestrial C3 plant signature. Comprehensive analysis of the core indicates both terrestrial and aquatic sources contribute to the OM in sediment. Temperature and precipitation are most likely the critical factors that influence δ13C: warm and wet conditions favor lower δ13C, whereas a dry and cool climate leads to higher δ13C values. Higher δ15N values may result from greater water depth and increased primary productivity, promoted by large inputs of dissolved inorganic nitrogen, induced by high surface runoff. Lower δ15N values are associated with lower lake stage and reduced productivity, under drier conditions. Therefore, stratigraphic shifts in these stable isotopes were used to infer past regional climate. Measures of δ13C and δ15N in deglacial deposits, in combination with total organic carbon (TOC) and nitrogen (TN) concentrations, the TOC/TN ratio, coarse silt and sand fractions, dry bulk density and low-frequency mass magnetic susceptibility, reveal two dry and cold events at 15,400–14,500 and 13,000–11,000 cal a BP, which correspond to Heinrich event 1 and the Younger Dryas, respectively. A pronounced warm and wet period that occurred between those dry episodes, from 14,500 to 13,000 cal a BP, corresponds to the Bølling–Allerød. The δ13C and δ15N data, however, do not reflect a warm and wet early Holocene. The Holocene optimum occurred between ~8000 and 6000 cal a BP, which is different from inferences from the nearby Dongge cave stalagmite δ18O record, but consistent with our previous results. This study contributes to our understanding of climate-related influences on δ13C and δ15N in OM of lake sediments in South China.  相似文献   

13.
The nitrogen stable isotopic signature (δ15N) of sediment is a powerful tool to understand eutrophication history, but its interpretation remains a challenge. In a large-scale comparative approach, we identified the most important drivers influencing surface sediments δ15N of 65 lakes from two regions of Canada using proxies that reflect watershed nitrogen (N) sources, internal lake microbial cycling and productivity. Across regions, we found that water column total nitrogen (TN),  %N in the sediments and lake morphometric variables were the best predictors of sedimentary δ15N, explaining 66 % of its variation. Significant relationships were also found between sediment δ15N and human-derived N load ( \( R_{{{\text{adj}} .}}^{2} \)  = 0.23, p < 0.001), the latter being a strong predictor of TN ( \( R_{{{\text{adj}} .}}^{2} \)  = 0.68, p < 0.001). Despite a relatively strong overall relationship, variation partitioning revealed an interesting difference in the dominant variable that influenced regional δ15N. Alberta lake sedimentary δ15N signature was dominated by human derived N load. In contrast, internal processing appeared to be more important in Quebec lakes, where sediment δ15N was best explained by  %N in the sediments and lake volume. Overall, our findings support the use of δ15N in paleolimnological investigations to reconstruct changing N sources to lakes but also highlight that regions may have distinctive drivers. Interpretations of sediment δ15N are likely to be strongest when multiple lines of evidence are employed and when placed in a regional context.  相似文献   

14.
In this paper, stable isotope(δ~(18)O, δD) investigations were completed in ground ice from a deep borehole in the Beiluhe Basin on northern Qinghai-Tibet Plateau to unravel the isotopic variations of ground ice and their possible source water. The δ~(18)O and δD of ground ice show distinctive characteristics compared with precipitation and surface water. The near-surface ground ice is highly enriched in heavier isotopes(δ~(18)O and δD), which were gradually depleted from top to bottom along the profile. It is suggestive of different origin and ice formation process. According to isotopic variations, the ice profile was divided into three sections: the near-surface ground ice at 2.5 m is frozen by the active-layer water which suffered evaporation. It is possible that ground ice between 3 and 4.2 m is recharged by the infiltration of snowmelt. From 5 to 6 m, the ground ice show complex origin and formation processes. Isotopic variations from 6 to 11.1 m and 20.55 m indicate different replenishment water. The calculated slope of freezing line(S=6.4) is larger than the experimental value(5.76), and is suggestive of complex origin and formation process of ground ice.  相似文献   

15.
Historically, the Sanpoil River, Washington (USA) produced spawning runs of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (O. mykiss). Lake Roberta is connected to the Sanpoil River and local oral history suggests it may have supported anadromous sockeye salmon (O. nerka) until the completion of Grand Coulee Dam in the 1940s. Post-spawning mortality of anadromous salmon provides large pulses of marine-derived nutrients to aquatic and terrestrial ecosystems in the vicinity of spawning sites. Unique isotopic ratios of these marine-derived nutrients are often transferred to freshwater algae and archived in lake sediments. However, marine-derived isotope signatures may be overpowered by large inputs of other nutrient sources such as agricultural fertilizers, reactive nitrogen deposition, nitrogen fixation, or poor trophic transfer to freshwater algae. We compared nitrogen and sulfur isotope compositions for pre-1940 and post-1940 sediments to those collected from a control lake with no history of anadromy to investigate the possible historic presence of anadromous salmon in Lake Roberta. We also analyzed carbon isotopes, carbon:nitrogen ratios, and sediment accumulation rates to determine if changes in the lake sediments resulted from eutrophication rather than salmon exclusion. If sockeye did spawn in Lake Roberta historically, and if excessive nitrogen inputs did not overpower the marine-derived signal, we would expect pre-1940 sediment organic matter isotope compositions indicative of the large pulses of marine nutrients from decomposing salmon carcasses. Isotope results and land use in the Lake Roberta watershed present no conclusive evidence to support anecdotal accounts of anadromy. There is some evidence to suggest that marine-derived nutrients transferred to riparian communities within the lake’s watershed may have moved downstream to the lake. However, most of the evidence suggests eutrophication and a switch to increased autochthonous productivity are the main causes of changes in the lake sediment isotope composition.  相似文献   

16.
Sediment core PI-6 from Lake Petén Itzá, Guatemala, possesses an ~85-ka record of climate and environmental change from lowland Central America. Variations in sediment lithology suggest large and abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. We measured stable carbon isotope ratios of total organic carbon and long-chain n-alkanes from the core, the latter representing a largely allochthonous (terrestrial) source of organic matter, to reveal past shifts in the relative proportion of C3–C4 terrestrial biomass. We sought to test whether stable carbon isotope results were consistent with other paleoclimate proxies measured in the PI-6 core, and if extraction and isotope analysis of n-alkanes is warranted. The largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the last glacial maximum indicate moderate precipitation with little fluctuation. The deglacial was a period of pronounced climate variability, e.g. a relatively warm and moist Bølling–Allerød, but a cool and dry Younger Dryas. Arid periods of the deglacial were inferred from samples with high δ13C values in total organic carbon, which reflect times of greater proportions of C4 plants. These inferences are supported by stable isotope measurements on ostracod shells and relative abundance of grass pollen from the same depths in core PI-6. Similar trends in carbon stable isotopes measured on bulk organic carbon and n-alkanes suggest that carbon isotope measures on bulk organic carbon in sediments from this lake are sufficient to infer past climate-driven shifts in local vegetation.  相似文献   

17.
A 7.6-m lake sediment core from a marl lake, Lough Inchiquin, records variation in landscape evolution from 16,800 cal yrs B.P. to 5,540 cal yrs B.P. We observe significant variations (up to 12‰) in δ 13Corg and δ 13Ccalcite values that are interpreted to reflect secular changes in lake water δ 13CDIC values that result from a regional landscape transition from barren limestone bedrock to a forested ecosystem. Lake water δ 13CDIC values are therefore influenced by two isotopically distinct sources of carbon: terrestrial organic material (−27.1 to −31.2‰VPDB) via oxidized soil organic matter and weathered limestone bedrock (+3.4‰VPDB). Isotope excursions in lacustrine sediment records are forced not only by changes in productivity but also by changes in the terrestrial environment. This has profound implications for the interpretation of paleoclimate records derived from lacustrine sediment and suggests that selection of appropriate lakes can provide records of terrestrial change where other related records are not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号