首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用刮削法、化学试剂法、热力分解法、电化学法等对电化学处理苯酚废水时阳极生成的聚苯酚膜层与不锈钢基体的分离进行了探索研究。电化学测试、差热扫描分析结果表明:刮削法、化学试剂法和热力分解法存在膜去除不彻底或聚合物不能回收等缺点,只有电化学法能彻底移除阳极聚苯酚膜。控制体系pH为2、采用0.1mol/L硫酸钠水溶液为电解质、阳极电流密度维持在10mA/cm2以上及电解时间3~10min,即可将苯酚聚合物与不锈钢基体剥离,阳极不锈钢电极可直接回用。  相似文献   

2.
本方报导了用电化学方法实现苯酚在金属电极上的聚合,以循环伏安图直观地显示了苯酚在碱性介质中的聚合行为,非原位红外反射实验表征了聚苯酚(PPO)的生成,并给予了聚合机理上的探讨。  相似文献   

3.
用电化学法在铂片电极上实现了邻基苯酚在酸性溶液中的聚合。聚邻氨基苯酚具有良好的电活性。用红外吸收光谱法表征了聚邻氨基酚薄膜,认为该聚合物具有梯形结构,其中吩恶嗪环作为电活性点。  相似文献   

4.
制作了多壁碳纳米管电极,并将其应用于苯酚的氧化处理上.结果发现有很好的氧化峰出现在电位窗口内,峰电流在一定范围内与苯酚的浓度成良好的线性关系.长时间恒电位氧化实验表明,能克服传统碳电极的缺点,电极表面没有积垢,电极的重现性较好,可以逐渐将苯酚氧化.  相似文献   

5.
《吉林工学院学报》1991,12(3):44-48
用电化学法在铂片电极上实现了邻基苯酚在酸性溶液中的聚合,聚今氨基苯酚具有良好的电活性。用红外吸收光谱法表征了聚邻氨基酚薄膜,认为该聚合物具有梯形结构,其中吩恶嗪环作为电活性点。  相似文献   

6.
研究了Na2SO4/SiO2复合储能材料的工艺性能.进行了成型压力、烧成温度和保温时间3因素3水平L9(33)正交实验.分析了这些因素对储能材料的致密度与高温强度的影响,从中获得了致密度和高温强度最佳时的工艺参数.对储能材料的蓄热性能进行了初步研究,结果表明Na2SO4/SiO2复合储能材料的蓄热密度是显热陶瓷蓄热料的2.7倍.  相似文献   

7.
电化学法生成Fenton试剂处理苯酚模拟废水的试验研究   总被引:4,自引:0,他引:4  
用电解法对苯酚废水进行了处理.以活性炭纤维为阴极,铁为阳极,并向阴极不断通入空气,电解过程中生成的H2O2与阳极溶解的Fe2 形成Fenton试剂,Fenton试剂在电解的过程中可以产生大量活性羟基OH,能够很好地氧化降解废水中的苯酚.在最佳试验条件下,苯酚的去除率能够达到90%以上,取得了很好的去除效果,并且有效地降低了Fenton试剂的成本.  相似文献   

8.
以(n-Bu4N)4[Mo8O26]为原料,邻巯基苯酚为配体,在乙腈中合成了混合价聚合钼配合物。通过元素分析、红外光谱、^1HNMR谱、电子光谱、ESP谱、差热-热重分析,对此配合物进行了表征,并提出可能结构。  相似文献   

9.
采用二甲基甲酰胺、水杨醛、氨基乙酸、乙酸改性的聚邻苯二胺膜电极(PODB)配合Ni(Ⅱ),形成PODBd-Ni(Ⅱ),PODBh-Ni(Ⅱ),PODBe-Ni(Ⅱ),PODBa-Ni(Ⅱ)电极。红外光谱显示,Ni(Ⅱ)是由于改性物质和PODB以酰胺的形式结合,从而引入更多的含孤对电子的元素,配合到PODB膜中去的。在HCl溶液中(pH=3),PODBa-Ni(Ⅱ)的配合稳定性最好。掺杂Ni的PODB对O2和抗坏血酸(H2A)有电催化还原和氧化的作用。对H2A的催化氧化属于平行催化机理,电极反应受H2A向电极表面扩散的控制。  相似文献   

10.
采用循环伏安法制备了邻苯二胺电聚合膜。研究了聚邻苯二胺(ODB)合成过程中单体浓度、扫描速率、溶液中氢离子浓度、电极材料、阴离子种类、聚合时间等对聚合电量的影响,提出了最佳聚合方案,即在0.015mol/LODB+0.4mol/LKCl+0.1mol/LHCl溶液中,以100mV·s-1的速率循环扫描50min。根据红外光谱初步推测:单体浓度低时可聚合形成类似吩嗪的桥式化学结构;而浓度高时形成1,2,4取代的链式结构。  相似文献   

11.
研究了超声波降解苯酚废水的效果和超声波对降解效果的影响因素,实验结果说明溶液初始浓度,温度,pH等因素对苯酚降解效果有明显影响.结果表明:溶液的初始浓度为135.15mg/L,超声辐射时间为4小时,温度为30°C,pH=3.0时,超声波降解苯酚的效果较好,为5.64%.曝气可以促进苯酚的降解,加入H2O2可使降解率提高到61.60%.  相似文献   

12.
利用电化学及扫描电子显微镜(SEM)对316L与316LN两种不锈钢在高温高盐环境中的耐蚀性能进行了对比研究,利用Mott-Schottky曲线研究了两种材料的钝化膜半导体特征,借助X射线光电子能谱(XPS)研究了316LN不锈钢的钝化膜结构以及N元素在钝化膜中的分布状态。结果表明:在高温高盐环境中,两种材料形成的钝化膜都为n型半导体;316LN不锈钢形成的钝化膜耐点蚀性能更好,其钝化膜内缺陷浓度更低,N元素会在钝化膜中富集。最后利用点缺陷原理对316LN钝化膜的耐蚀机理进行了研究。  相似文献   

13.
焙烧类水滑石吸附去除水中苯酚   总被引:4,自引:0,他引:4  
用液相共沉淀法制备镁铝铁类水滑石.在500℃下焙烧,类水滑石转化为镁铝铁复合氧化物.用XRD、TG/DTA、比表面仪和FTIR对类水滑石和镁铝铁复合氧化物进行表征分析.以镁铝铁复合氧化物为吸附剂吸附水中的苯酚.对实验条件和主要影响因素进行研究,并对吸附处理机理进行探讨.实验结果表明:镁铝铁复合氧化物可有效去除水中的苯酚.去除苯酚的实验数据符合Langmuir吸附等温线.吸附动力学过程遵守Lagergren一级速率方程.镁铝铁复合氧化物可重新吸收阴离子恢复原有的层状结构.  相似文献   

14.
304不锈钢在闭塞区溶液中钝化膜组成和结构性能   总被引:6,自引:0,他引:6  
采用X射线光电子能谱 (XPS)和交流阻抗法 (EIS)研究了 304不锈钢在闭塞区溶液中钝化膜的组成和性能。研究结果表明:在闭塞区溶液中 304不锈钢表面钝化膜的外层主要为CrO3、CrCl3、CrOOH、Fe2O3γ-FeOOH、Fe(OH)3、CrO2-4 、Cr(OH)3、NiCl2 、FeCl2 和FeCl3;溅射 3min时膜内层主要为Cr2O3、CrO2 、FeCl2 、FeCl3以及少量的FeO。Cl-吸附在钝化膜表面,破坏了钝化膜的完整性,改变了钝化膜的结构性能。  相似文献   

15.
高交联聚苯乙烯大孔树脂对水溶液中苯酚的吸附性能   总被引:3,自引:0,他引:3  
用一步法合成高交联聚苯乙烯树脂, 采用红外光谱对其结构进行表征, 其红外光谱图中在1 704.43 cm-1处有较强的吸收峰, 表明该树脂含有较大量的羰基. 测定该高交联聚苯乙烯大孔树脂对水溶液中苯酚的吸附等温线, 利用Clausius-Clapeyron方程计算出其吸附热为9.70~24.52 kJ/mol, 由此推断出该树脂对水溶液中苯酚的吸附是通过氢键作用吸附的. 根据Freundlich方程对吸附等温线处理作出-ln ρ-ln q图, 用线性回归法拟合出自由能函数, 计算出吸附的自由能和吸附过程的熵变均小于0, 说明该树脂对水溶液中苯酚的吸附是一个放热、自发过程, 苯酚分子限制在树脂吸附位点上的二维运动.  相似文献   

16.
采用机械活化+热压烧结方法制备出Fe3Si基Fe3-xCrxSi(x-0,0.2,0.4,0.6)合金,用X-射线衍射分析其物相,通过浸泡腐蚀和电化学腐蚀研究其耐蚀性能,并用扫描电镜观察其腐蚀后的表面形貌.结果表明:Fe3-xCrxSi的主相仍是Fe3Si,晶体结构不变;随着Cr含量的增加,Fe3-xCrxSi的耐蚀性...  相似文献   

17.
采用阳极等离子体电解处理高盐废水中的苯酚.研究了阳极等离子体产生的条件,以及废水中盐的浓度、苯酚的质量浓度和处理时间对废水中COD去除率的影响.实验结果表明,在苯酚质量浓度为0.2g·L-1,NaCl浓度为0.4mol·L-1的溶液中,施加90V槽电压,处理10min,苯酚的去除率达100%;处理20min,废水的COD值从0.464g·L-1降到0.010g·L-1,COD去除率可达97.8%.探讨了阳极等离子体电解处理高盐废水中苯酚的机理.  相似文献   

18.
高速逆流色谱(盐溶液体系)分离制备白芍中的芍药苷   总被引:1,自引:0,他引:1  
建立应用高速逆流色谱分离纯化芍药中的芍药苷的方法。以正丁醇-乙酸乙酯-5%Na2SO4(4:1:5,V/V)为两相溶剂体系,在流速为2.0 mL/min、主机转速为800 r/min、检测波长为254 nm的条件下进行分离,从100 mg芍药粗提物中一次性分离制备得到56.13 mg芍药苷,高效液相色谱分析其纯度在98%以上,通过质谱、核磁共振氢谱和核磁共振碳谱鉴定化合物的结构。该方法简便、快捷且重现性好,适合芍药苷的制备型分离。  相似文献   

19.
乙醇-盐-水——液-液萃取分离PAR的研究   总被引:4,自引:0,他引:4  
研究了在(NH4)2SO4,Na2CO3存在下,乙醇与水相分离萃取PAR的情况.并研究了不同盐量与不同pH值对萃取分离的影响,实验表明,在乙醇-盐-水,液-液萃取体系中,PAR及其络合物能够完全进入乙醇相中,结果令人满意,表明乙醇-盐-水是一种较为理想的液-液萃取体系  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号