首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Using groundwater levels to estimate recharge   总被引:24,自引:4,他引:24  
Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods. Electronic Publication  相似文献   

3.
The area of study lies at the northeastern part of Nile Delta. Global shoreline regression and sea-level rise have their own-bearing on the groundwater salinization due to seawater intrusion. A new adopted approach for vulnerability mapping using the hydrochemical investigations, geographic information system and a weighted multi-criteria decision support system (WMCDSS) was developed to determine the trend of groundwater contamination by seawater intrusion. Six thematic layers were digitally integrated and assigned different weights and rates. These have been created to comprise the most decisive criteria used for the delineation of groundwater degradation due to seawater intrusion. These criteria are represented by the total dissolved solids, well discharge, sodium adsorption ratio, hydrochemical parameter (Cl/HCO3), hydraulic conductivity and water types. The WMCDSS modeling was tried, where a groundwater vulnerability map with four classes ranging from very low to high vulnerability was gained. The map pinpointed the promising localities for groundwater protection, which are almost represented by the very low or low vulnerability areas (53.69 % of the total study area). The regions having high and moderate groundwater vulnerability occupy 46.31 % of total study area, which designate to a deteriorated territory of groundwater quality, and needs special treatment and cropping pattern before use. However, the moderate groundwater vulnerability class occupies an area of about 28.77 % of the total mapped area, which highlighted the need for certain management practices to prevent the saltwater intrusion from expanding further to the south. There was a good correlation of the constructed vulnerability map with the recently gathered water quality data and hydrochemical facies evolution. The plotting of water quality data on Piper trilinear diagram revealed the evolution of freshwater into the mixing and the saline zones as an impact of seawater intrusion, which validates the model results.  相似文献   

4.
In this study, combining interpretations of conservative dissolved ions and environmental isotopes in water were used to investigate the main factors and mechanisms controlling groundwater salinization and hydrogeochemical processes in the Eastern Nile Delta, Egypt. Hydrogeochemical and isotopic study has been carried out for 61 water samples from the study area. Total dissolved solid (TDS) contents of groundwater are highly variable rising along flowpath from the south (410 mg/L) to the north (14,784 mg/L), implying significant deterioration and salinization of groundwater. Based on TDS and ionic ratios, groundwater samples were classified into three groups. In low-saline groups, water chemistry is greatly influenced by cation exchange, mineral dissolution/precipitation, anthropogenic pollutants and mixing with surface water. Whilst, in high-saline groups, water chemistry is affected by salt-water intrusion, reverse cation exchange and evaporation. The chemical constituents originating from saline water sources, reverse ion exchange and mineral dissolution are successfully differentiated using ionic delta and saturation index approaches. The δ18O–δ2H relationship plots on a typical evaporation line, suggesting potential evaporation of the recharging water prior to infiltration. Isotope evidence concludes that the groundwater have been considerably formed by mixing between depleted meteoric water recharged under different climatic conditions and recently infiltrating enriched surface water and excess of irrigation water. The δ18O data in conjunction with chloride concentrations provide firm evidence for impact of dissolution of marine-origin evaporite deposits, during past geologic periods, on groundwater salinity in the northern region. Moreover, the relation between 14C activities and Cl? concentration confirms this hypothesis.  相似文献   

5.
Hydrogeology Journal - Increasing population growth and global climatic changes threaten water security in semiarid regions such as Northern Ghana. The Tamnean Plutonic Suite aquifer is the main...  相似文献   

6.
This paper presents a method for the feasibility of an artificial recharge scheme in a limestone aquifer. A 3D digital groundwater flow model was developed and calibrated to gain a better understanding of the aquifer dynamics and to estimate its capacity for artificial recharge. Several scenarios, based on different pumping alternatives, were tested over a 30 year period. The results were then analysed by yearly input-output balances. Worst case scenario model output suggests that implementing the scheme might ensure a sustainable use of the aquifer in the future.  相似文献   

7.
Mountain-front recharge (MFR) is a process of recharging an aquifer by infiltration of surface flow from streams and adjacent basins in a mountain block and along a mountain front (MF). This is the first attempt in India to estimate MFR along the foothills of Courtallam using hydrogeochemistry and geostatistical tools. The estimation of MFR has been carried out by collecting groundwater samples along the foothills of Courtallam. Collected water samples were analyzed for major cations and anions using standard procedures. Hydrogeochemical facies show the existence of four water types in this region. Calcium-rich water derived from gneissic rock terrain indicates significant recharge from higher elevation. Log pCO2 and ionic strength of the samples were also calculated to identify the geochemical process. Majority of the collected samples have sodium-rich water and weak ionic strength, which indicate foothill recharge and low residence time. Silicate and carbonate weathering have an equal interplay along the foothills with a relatively large fraction of Mg from the MF. The spatial diagrams of three factors show that the southern part of the study area is dominated by both weathering and anthropogenic processes, whereas the northern part is dominated by both leaching and weathering processes. Thus, the dominant weathering process represented by the second factor indicates the large recharge process along the foothills.  相似文献   

8.
Surface water bodies interact with underlying aquifer systems, creating a complex flow system and flow paths. In general, a surface water body may be classified as gaining, losing, or flow through on the basis of its interaction with the surrounding aquifer. In the Nile Valley, the quaternary aquifer system is in a direct hydraulic interaction with the River Nile, canals, and drains. In this study, a regional numerical model was developed and used to evaluate the interaction between surface water bodies and the quaternary aquifer system in the Nile Valley. The solution is considered for a quasi three-dimensional, steady-state groundwater flow. The model used simulates the interaction between surface water bodies and groundwater for saturated and unsaturated flow conditions. In addition, a hydrodynamic model was used to simulate different extreme (high and low) scenarios for Nile surface water levels along the distance between Old Aswan Dam and Delta Barrages. Model calibration shows close results, and the model was used to simulate surface water levels. Results indicate that the Nile River acts as a drain for the quaternary aquifer (gaining water from the aquifer), although in the reaches upstream of the main barrages, the Nile loses the water, recharging the aquifer. All other main canals are recharging the aquifer system. The seepage rate depends mainly on the difference in piezometric head between the aquifer system and surface water bodies, as well as the hydraulic conductance of the base layer sediments of the surface water body. The model was used to evaluate the regional water balance for the Nile Valley and to estimate the surface water bodies' gains and losses.  相似文献   

9.
Pollution and overexploitation of scarce groundwater resources is a serious problem in the Zarqa River catchment, Jordan. To estimate this resource’s potential, the amount and spatial distribution of groundwater recharge was calculated by applying the hydrological model J2000. The simulation period is composed of daily values gathered over a 30-year period (July 1977 to June 2007). The figure finally obtained for estimated groundwater recharge of the Zarqa River catchment is 105 × 106 m3 per year (21 mm a?1). This is 19 % higher than the value previously assumed to be correct by most Jordanian authorities. The average ratio of precipitation to groundwater recharge is 9.5 %. To directly validate modelled groundwater recharge, two independent methods were applied in spring catchments: (1) alteration of stable isotope signatures (δ18O, δ2H) between precipitation and groundwater and (2) the chloride mass balance method. Recharge rates determined by isotopic investigations are 25 % higher, and recharge rates determined by chloride mass balance are 9 % higher than the modelled results for the corresponding headwater catchments. This suggests a reasonably modelled safe yield estimation of groundwater resources.  相似文献   

10.
This study aims to estimate artificial recharge of groundwater by using remote sensing technology, geographical information systems, and groundwater surveys. This study is part of the King Fahd project for rainfall and runoff water harvesting, within the premises of Alilb Dam in Diriyah to the west of Riyadh. Digital elevation models were obtained with the help of aerial photography from the year 2007. These models were used to delineate watershed. Average rainfall was calculated using isoheytal method, and the area of each of the storage lakes was measured using SPOT 5 satellite images from 2007. Fluctuations in groundwater levels, evaporation, and infiltration rates were used to determine the water balance for the purpose of estimating of artificial recharge. Artificial recharge rates were found to surpass natural recharge from rainfall. Recharge wells caused a reduction in the effect of evaporation on storage lakes and helped in supplying water to the groundwater reservoir. Moreover, 80% and 86% of the rainwater was found to be available for artificial recharge in Alilb at 2005 and 2007, respectively. The study recommends the establishment of strategic projects for water storage using artificial recharge wells, an increase in the number of monitoring wells around the dams, and the monitoring of hydrochemical changes in groundwater both before and after the artificial recharge. It also recommends the erection of a weather station in the northwest of Wadi Hanifa.  相似文献   

11.
Mujib watershed is an important groundwater basin which is considered a major source for drinking and irrigation water in Jordan. Increased dependence on groundwater needs improved aquifer management with respect to understanding deeply recharge and discharge issues, planning rates withdrawal, and facing water quality problems arising from industrial and agricultural contamination. The efficient management of this source depends on reliable estimates of the recharge to groundwater and is needed in order to protect Mujib basin from depletion. Artificial groundwater recharge was investigated in this study as one of the important options to face water scarcity and to improve groundwater storage in the aquifer. A groundwater model based on the MODFLOW program, calibrated under both steady- and unsteady-state conditions, was used to investigate different groundwater management scenarios that aim at protecting the Mujib basin. The scenarios include variations of abstraction levels combined with different artificial groundwater recharge quantities. The possibilities of artificial groundwater recharge from existing and proposed dams as well as reclaimed municipal wastewater were investigated. Artificial recharge options considered in this study are mainly through injecting water directly to the aquifer and through infiltration from reservoir. Three scenarios were performed to predict the aquifer system response under different artificial recharge options (low, moderate, and high) which then compared with no action (recharge) scenario. The best scenario that provides a good recovery for the groundwater table and that can be feasible is founded to be by reducing current abstraction rates by 20% and implementing the moderate artificial recharge rates of 26 million(M)m3/year. The model constructed in this study helps decision makers and planners in selecting optimum management schemes suitable for such arid and semi-arid regions.  相似文献   

12.
Communities and water utilities are increasingly being forced to implement more hydrogeologically complex alternative water supply and storage options to meet increasing freshwater demands. The performance of managed aquifer recharge projects, including aquifer storage and recovery, is controlled by the movement and mixing of stored freshwater and native groundwater, and fluid–rock interactions, which, in turn, are strongly influenced by aquifer heterogeneity. Advanced borehole geophysical logging techniques developed for the oil and gas industry such as neutron-gamma ray spectroscopy, microresistivity imaging, and nuclear magnetic resonance, can provide hitherto unavailable fine-scale data on porosity (total and effective), hydraulic conductivity, salinity, and the mineralogical composition of aquifers. Data on aquifer heterogeneity obtained from advanced borehole geophysics logs, combined with information on larger-scale aquifer hydraulics obtained from pumping tests, have the potential for improving aquifer characterization and modeling needed for feasibility assessments and the design and optimization of the operation of managed aquifer recharge systems.  相似文献   

13.
The occurrence of fluoride in ground water is the focus of the public and has attracted the attention of many scientists all over the world due to its importance in public health. Deficiency or increase of fluoride uptake is considered a public health problem due to the narrow permissible limit which should not exceed 1.5 mg/l according to the World Health Organization (WHO). The range of fluoride tolerance and toxicity is narrow. Deviation from the optimal levels therefore results in dental health effects such as caries and fluorosis. Many studies have found fluorosis to be invariably associated with high concentrations of fluoride in drinking water. Fluorosis is a considerable health problem in many areas of the world including Brazil, China, East Africa, Ghana, India, Kenya, Korea, Malawi, Mexico, Pakistan, South Africa, southeastern Korea, Spain, Sri Lanka, Sudan, Taiwan, Tanzania, and Turkey. Fluoride in groundwater of Quaternary aquifer of the Nile Valley, Egypt, does not gain the attention of the authors in the Nile Valley which makes the public health status of fluoride is not certain. The present work aims at investigating the fluoride concentration of Quaternary groundwater aquifer at Luxor as a representative area of the Nile Valley to be a base line for subsequent studies and criteria for public health. Ground water samples were collected from Quaternary groundwater aquifer at Luxor area, Egypt and analyzed for the purpose of investigating fluoride content. The results showed that fluoride concentration in the study area ranges between 0.113 and 0.452 with an average of 0.242 mg/l. Sources of fluoride in the study area can result from the natural dissolution from fluoride-rich minerals, fertilizers and from groundwater recharge. It is worth mentioning that low fluoride content in the study area is considered a public health threat specially limited growth, fertility, and dental caries. Corrective measures should be taken to avoid the public health impacts of fluoride deficiency at Luxor area as well as similar areas in the Nile Valley. A public health program should be initiated to account for the deficiency of fluoride in groundwater and deal with the other supplementary fluoride sources in food or fluoridation of drinking water supplies.  相似文献   

14.
Whether groundwater resources can be sustainably utilized is largely determined and characterized by hydrogeological parameters.Estimating the groundwater recharge is one of the essential parameters for managing water resources and protecting water resources from contamination.This study researched the spatial and temporal variation of groundwater recharge in the Thepkasattri sub-district through integrating chloride mass balance(CMB)and water table fluctuation(WTF)methods.The chloride content of representative rainfall and groundwater samples was analyzed.Besides,WTF method was adopted from groundwater level data from 2012 to 2015.According to the CMB method,the mean recharge was estimated to be 1172 mm per year,accounting for 47%of the annual rainfall.Moreover,the estimated recharge from the WTF method took 26%of annual rainfall in 2015.The recharge was underestimated according to the WTF method,because of the uncertainty in specific yield estimates and the number of representative wells in the study area.Moreover,the correlation between rainfall and water table fluctuation data indicated the positive linear relationship between two parameters.The spatial recharge prediction indicated that recharge was higher(1200-1400 mm/yr)in the eastern and western catchment,while that in the central floodplains was between 800 mm/yr and 1100 mm/yr.In addition,low recharge value between 450 mm/yr and 800 mm/yr was observed in the south-west part of Thepkasattri.The spatial variation of recharge partly reflects the influences of land use and land cover of the study area.  相似文献   

15.
Quantifying dryland groundwater recharge as a function of climate variability is becoming increasingly important in the face of a globally depleted resource, yet this remains a major challenge due to lack of adequate monitoring and the complexity of processes involved. A previously unpublished and unique dataset of high density and frequency rainfall measurements is presented, from the Fowlers Gap Arid Zone Research Station in western New South Wales (Australia). The dataset confirms extreme spatial and temporal variability in rainfall distribution which has been observed in other dryland areas and is generally explained by the dominance of individual storm cells. Contrary to previous observations, however, this dataset contains only a few localised storm cells despite the variability. The implications of spatiotemporal rainfall variability on the estimation of groundwater recharge is assessed and show that the most likely recharge mechanism is through indirect and localised, rather than direct, recharge. Examples of rainfall and stream gauge height illustrate runoff generation when a spatially averaged threshold of 15–25 mm (depending on the antecedent moisture conditions) is exceeded. Preliminary assessment of groundwater levels illustrates that the regional water table is much deeper than anticipated, especially considering the expected magnitude of indirect and localised recharge. A possible explanation is that pathways for indirect and localised recharge are inhibited by the large quantities of Aeolian dust observed at the site. Runoff readily occurs with water collecting in surface lakes which slowly dry and disappear. Assuming direct groundwater recharge under these conditions will significantly overestimate actual recharge.  相似文献   

16.
Hydrogeology Journal - A participatory modelling approach is presented for effective groundwater management at the Mediterranean coastal plain of Marathon, Greece. The main objective was to...  相似文献   

17.
Groundwater recharge was investigated in the most extensive sand and gravel aquifer (area of approximately 200 km2) in the Republic of Ireland as part of a wider study seeking to derive recharge estimates using aquifer vulnerability mapping. The proportion of effective rainfall (total rainfall minus actual evapotranspiration) that leads to recharge is known as the recharge coefficient. The recharge investigation involved a variety of approaches, including soil moisture budgeting, well hydrograph analysis, numerical modelling and a catchment water balance. The adoption of multiple techniques provided insights on recharge and also on aquifer properties. Comparison of two soil moisture budgeting approaches (FAO Penman-Monteith with Penman-Grindley) showed how variations in the effective rainfall values from these methods influence groundwater levels simulated in a numerical groundwater model. The catchment water balance estimated the recharge coefficient to be between 81 and 85%, which is considered a reasonable range for this aquifer, where overland flow is rarely observed. The well hydrograph analysis, using a previous estimate of specific yield (0.13), gave recharge coefficients in the range of 40–80%, considered low for this aquifer: a revised specific yield of 0.19 resulted in a more reasonable range of recharge coefficients of between 70 and 100%.  相似文献   

18.
Multiple age tracers were measured to estimate groundwater residence times in the regional aquifer system underlying southwestern Oman. This area, known as the Najd, is one of the most arid areas in the world and is planned to be the main agricultural center of the Sultanate of Oman in the near future. The three isotopic age tracers 4He, 14C and 36Cl were measured in waters collected from wells along a line that extended roughly from the Dhofar Mountains near the Arabian Sea northward 400 km into the Empty Quarter of the Arabian Peninsula. The wells sampled were mostly open to the Umm Er Radhuma confined aquifer, although, some were completed in the mostly unconfined Rus aquifer. The combined results from the three tracers indicate the age of the confined groundwater is < 40 ka in the recharge area in the Dhofar Mountains, > 100 ka in the central section north of the mountains, and up to and > one Ma in the Empty Quarter. The 14C data were used to help calibrate the 4He and 36Cl data. Mixing models suggest that long open boreholes north of the mountains compromise 14C-only interpretations there, in contrast to 4He and 36Cl calculations that are less sensitive to borehole mixing. Thus, only the latter two tracers from these more distant wells were considered reliable. In addition to the age tracers, δ2H and δ18O data suggest that seasonal monsoon and infrequent tropical cyclones are both substantial contributors to the recharge. The study highlights the advantages of using multiple chemical and isotopic data when estimating groundwater travel times and recharge rates, and differentiating recharge mechanisms.  相似文献   

19.
Quantitative evaluations of the impact of groundwater abstraction on recharge are rare. Over a period (1975??007) during which groundwater abstraction increased dramatically in the Bengal Basin, changes in net groundwater recharge in Bangladesh are assessed using the water-table fluctuation method. Mean annual groundwater recharge is shown to be higher (300??00?mm) in northwestern and southwestern areas of Bangladesh than in southeastern and northeastern regions (<100?mm) where rainfall and potential recharge are greater. Net recharge in many parts of Bangladesh has increased substantially (5??5?mm/year between 1985 and 2007) in response to increased groundwater abstraction for irrigation and urban water supplies. In contrast, net recharge has slightly decreased (??.5 to ???mm/year) in areas where groundwater-fed irrigation is low (<30% of total irrigation) and where abstraction has either decreased or remained unchanged over the period of 1985??007. The spatio-temporal dynamics of recharge in Bangladesh illustrate the fundamental flaw in definitions of “safe yield??based on recharge estimated under static (non-pumping) conditions and reveal the areas where (1) further groundwater abstraction may increase actual recharge to the shallow aquifer, and (2) current groundwater abstraction for irrigation and urban water supplies is unsustainable.  相似文献   

20.
Groundwater recharge sets a constraint on aquifer water balance in the context of water management. Historical data on groundwater and other relevant hydrological processes can be used to understand the effects of climatic variability on recharge, but such data sets are rare. The climate of the Canadian prairies is characterized by large inter-annual and inter-decadal variability in precipitation, which provides opportunities to examine the response of groundwater recharge to changes in meteorological conditions. A decadal study was conducted in a small (250 km2) prairie watershed in Alberta, Canada. Relative magnitude of annual recharge, indicated by water-level rise, was significantly correlated with a combination of growing-season precipitation and snowmelt runoff, which drives depression-focussed infiltration of meltwater. Annual precipitation was greater than vapour flux at an experimental site in some years and smaller in other years. On average precipitation minus vapour flux was 10 mm y?1, which was comparable to the magnitude of watershed-scale groundwater recharge estimated from creek baseflow. Average baseflow showed a distinct shift from a low value (4 mm y?1) in 1982–1995 to a high value (15 mm y?1) in 2003–2013, indicating the sensitivity of groundwater recharge to a decadal-scale variability of meteorological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号