首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a numerical study of point defects in crystalline zircon (ZrSiO4). Vacancies and interstitials of all the constituents of zircon have been considered. For each defect, the structure and the formation energies have been calculated. Calculations, using the supercell method, are based on the Density Functional Theory in the Local Density Approximation. Empirical potentials have also been considered for comparison with electronic structure results. We find a formation energy for the oxygen interstitial of 1.7 eV. This value is compatible with the experimental activation energy for oxygen diffusion in zircon, which proves an interstitial mechanism for the diffusion of oxygen in zircon. For all other defects the calculated formation energies lead to negligible thermal concentration at equilibrium. Received: 8 January 1999 / Revised, accepted: 14 May 1999  相似文献   

2.
Atomistic computer simulation techniques have been employed to model mechanisms of hydrogen incorporation in the clinopyroxenes diopside and jadeite. Calculation of solution reaction energies for the pure phases indicates that hydrogen is most easily incorporated via the formation of [VSi(OH)4] x hydrogarnet type defects. When components of the two phases are mixed, then solution energies can become exothermic. The substitution of Al for Si in diopside and of Mg or Ca for Al in jadeite, provides favourable routes for hydrogen incorporation, with exothermic values of solution energy. Thus the amount of water present in these minerals in the Earth’s upper mantle will vary with composition. Simulation of IR frequencies associated with O–H stretching at specific defect clusters has also been carried out. An analysis of hydrogen–oxygen bond lengths gives good agreement, although comparison of experimental and calculated IR frequencies are problematic. This is partly due to the complexity of experimental spectra, but may also be due in part to deficiencies in the ability of the model to accurately describe the O–H stretching frequency.  相似文献   

3.
 Computer simulation techniques have been used to investigate the energetics of defect formation in Albite and to calculate O and (OH) migration activation energies. We find that the Na Frenkel defect has the lowest formation energy, whilst interstitials associated with impurities are the most favourable O defects. Water can be accommodated in the albite structure as both OH groups and as H2O molecules with solution energy of 0.73 eV and 0.9 eV respectively. The activation energies for O migration is reduced by up to 50% when the O is migrating as part of an (OH) group. In addition, we find a marked diffusional anisotropy for both O and (OH) in albite. Received: 15 September 1995 / Accepted: 29 April 1996  相似文献   

4.
Oxygen deficient perovskites of the system CaSiO3–CaAlO2.5 have been synthesised at high-pressure and -temperature conditions relevant to the Earth’s transition zone in order to investigate their stabilities in the Earth’s mantle and determine structural properties associated with vacancy incorporation. Two polysomes of thermodynamically stable defect perovskites with Ca(Al0.4Si0.6)O2.8 and Ca(Al0.5Si0.5)O2.75 stoichiometry have been identified. The ordering of oxygen defects into pseudo-cubic (111) layers results in well-ordered ten- or eightfold superstructures, respectively. At all other compositions examined, a metastable formation of perovskites has been observed instead, which are assumed to grow initially disordered. These are now characterised by tiny domains, formed due to subsequent ordering of vacancies along various pseudo-cubic {111} layers. Both ordered defect perovskites show a large P–T stability field ranging from about 9–18 GPa and 4–12 GPa, respectively. Microstructural TEM analyses revealed the presence of growth and ferroelastic twins, which indicate a phase transition from rhombohedral to monoclinic symmetry during quenching. Electron energy loss spectroscopy of Si and Al K edges point at the presence of tetrahedral, octahedral and maybe some pentacoordinated silicon, whereas aluminium is predominantly octahedrally coordinated with minor fractions in lower coordination. Observed properties are interpreted in terms of a new structural model, explaining the observed phase transition and formation of different twin laws as well as giving reasons for the development of such large superstructures. With respect to phase relations of the transition zone, the potential occurrence of such defect perovskites in the Earth’s interior is discussed.  相似文献   

5.
 Defect structure and the defect formation in mullites and sillimanites have been investigated using computer simulation techniques. From point defect chemistry and computer simulations, oxygen vacancies are identified as the majority defect responsible for oxygen transport in mullite. The defect formation energies are between 3 and 4 eV. Using supercell calculation methods, the random structure is identified to be stable in mullites, whereas the ordered structure can be confirmed to be more stable in sillimanite. An energy of 0.7–1.0 eV for the association of oxygen vacancies with cations is estimated. Received: 11 May 2001 / Accepted: 12 December 2001  相似文献   

6.
The synthetic LiGaSi2O6 clinopyroxene is monoclinic C2/c at room-T. Its experimental electron density, ρ(r), has been derived starting from accurate room-T single-crystal diffraction data. Topological analysis confirms an intermediate ionic-covalent character for Si–O bonding, as found by previous electron-density studies on other silicates such as diopside, coesite and stishovite. The non-bridging Si–O bonds have more covalent character than the bridging ones. The Ga–O bonds have different bonding characters, the Ga–O2 bond being more covalent than the two Ga–O1 bonds. Li–O bonds are classified as pure closed-shell ionic interactions. Similar to spodumene (LiAlSi2O6), Li has sixfold coordination, but the bond critical points associated to the two longest bonds are characterized by very low electron density values. Similar to what previously found in spodumene and diopside, O···O interactions were detected from the topological analysis of ρ(r), and indicate a cooperative interaction among the lone pairs of neighbouring oxygen atoms. In particular, this kind of interaction has been obtained for the O1···O1 edge shared between two Ga octahedra. Integration over the atomic basins gives net charges of −1.39(10), 2.82(10), 1.91(10) and 0.82(8) e for O (averaged), Si, Ga and Li atoms, respectively. Periodic Hartree–Fock and DFT calculations confirm the results obtained by multipole refinement of the experimental data. Moreover, the theoretical topological properties of the electron density distribution on the Si2O6 group are very similar to those calculated for spodumene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Classical atomistic simulation techniques have been used to investigate the energies of hydrogen defects in Mg2SiO4 and Mg2GeO4 spinels. Ringwoodite (γ-Mg2SiO4) is considered to be the most abundant mineral in the lower part of the transition zone and can incorporate large amounts of water in the form of hydroxyls, whereas the germanate spinel (γ-Mg2GeO4) corresponds to a low-pressure structural analogue for ringwoodite. The calculated defect energies indicate that the most favourable mechanisms for hydrogen incorporation are coupled either with the reduction of ferric iron or with the creation of tetrahedral vacancies. Hydrogen will go preferentially into tetrahedral vacancies, eventually leading to the formation of the hydrogarnet defect, before associating with other negatively charged point defects. The presence of isolated hydroxyls is not expected. The same trend is observed for germanate, and thus γ-Mg2GeO4 could be used as a low-pressure analogue for ringwoodite in studies of water-related defects and their effect on physical properties.  相似文献   

8.
 We have performed atomistic computer simulations on trace element incorporation into the divalent dodecahedral X-sites of pyrope (Py — Mg3Al2Si3O12) – grossular (Gr — Ca3Al2Si3O12) solid solutions. An ionic model and the Mott–Littleton two-region approach to defect energies were used to calculate the energetics of substitution by a range of divalent trace-elements and of charge-balanced substitution by trivalent ions in the static limit. Results are compared with experimental high-temperature, high-pressure garnet-melt trace element partitioning data obtained for the same garnet solid solution to refine our understanding of the factors controlling element partitioning into solid solutions. Defect energies (U def,f), relaxation (lattice strain) energies (U rel), and solution energies (U sol) were derived using two different approaches. One approach assumes the presence of one type of hybrid X-site with properties intermediate between pure Mg and Ca sites, and the other assumes discrete Mg and Ca X-sites, and thus two distinct cation sublattices. The hybrid model is shown to be inadequate, since it averages out local distortions in the garnet structure. The discrete model results suggest trace elements are more soluble in Py50Gy50 than in either end-member compound. Physically this is due to small changes in size of the X-sites and the removal of unfavourable interactions between third nearest neighbours of the same size. Surprisingly, depending on the local order, large trace element cations may substitute for Mg2+ and small trace elements for Ca2+ in Py50Gr50. These solubilities provide an explanation for the anomalous trace-element partitioning behaviour along the pyrope–grossular join observed experimentally. Received: 27 January 2000 / Accepted: 14 February 2003  相似文献   

9.
 Quantum-mechanical solid-state calculations have been performed on the highest-pressure polymorph of magnesium aluminate (CaTi2O4-type structure, Cmcm space group), as well as on the low-pressure (Fdm) spinel phase and on MgO and Al2O3. An ab initio all-electron periodic scheme with localized basis functions (Gaussian-type atomic orbitals) has been used, employing density-functional-theory Hamiltonians based on LDA and B3LYP functionals. Least-enthalpy structure optimizations in the pressure range 0 to 60 GPa have allowed us to predict: (1) the full crystal structure, the pV equation of state and the compressibility of Cmcm-MgAl2O4 as a function of pressure; (2) the phase diagram of the MgO–Al2O3–MgAl2O4 system (with exclusion of CaFe2O4-type Pmcn-MgAl2O4), and the equilibrium pressures for the reactions of formation/decomposition of the Fdm and Cmcm polymorphs of MgAl2O4 from the MgO + Al2O3 assemblage. Cmcm-MgAl2O4 is predicted to form at 39 and 57 GPa by LDA and B3LYP calculations, with K 0=248 (K′=3.3) and 222 GPa (K′=3.8), respectively. Results are compared to experimental data, where available, and the performance of different DFT functionals is discussed. Received: 31 January 2001 / Accepted: 16 May 2001  相似文献   

10.
Upon intercalation of both ordered (low defect) and disordered (high defect) kaolinites with acetamide, two types of interaction are observed. Firstly, hydrogen bonding between the NH2 groups of the acetamide with the siloxane oxygens is formed, as evidenced by the formation of two new bands at 3400 and 3509 cm–1. Secondly, the appearance of additional bands at ∼3600 cm–1 in both the infrared and Raman spectra of the acetamide intercalates is attributed to a second type of hydrogen bonding by the interaction of the C=O group and the inner surface hydroxyls. Changes in the intensity of the hydroxyl deformation modes in the 895 to 940 cm–1 region are attributed to the changes in the hydrogen bonding of the kaolinite surfaces. It is proposed that the hydrogen bonding between the adjacent kaolinite layers is replaced with hydrogen bonding between both kaolinite surfaces and the acetamide molecule. Changes in the molecular structure of acetamide are observed upon intercalation. The amide 1 band is lost and replaced with a well-defined NH2 deformation vibration. The loss of the amide 1 band is attributed the hydrogen bond formation between the amide hydrogens and the siloxane surface. The bands of the C=O group at 1680 and 1740 cm–1 become a single band at 1680 cm–1. The amide 2 band remains unchanged. The lack of intensity of the 1740 cm–1 band is attributed to the formation of hydrogen bonding between the inner surface hydroxyl groups and the carbonyl group. Received: 4 February 1998/ Revised, accepted: 30 June 1998  相似文献   

11.
 As part of a wider study of the nature and origins of cation order–disorder in micas, a variety of computational techniques have been used to investigate the nature of tetrahedral and octahedral ordering in phengite, K2 [6](Al3Mg)[4](Si7Al)O20(OH)4. Values of the atomic exchange interaction parameters J n used to model the energies of order–disorder were calculated. Both tetrahedral Al–Si and octahedral Al–Mg ordering were studied and hence three types of interaction parameter were necessary: for T–T, O–O and T–O interactions (where T denotes tetrahedral sites and O denotes octahedral sites). Values for the T–T and O–O interactions were taken from results on other systems, whilst we calculated new values for the T–O interactions. We have demonstrated that modelling the octahedral and tetrahedral sheets alone and independently produces different results from modelling a whole T–O–T layer, hence justifying the inclusion of the T–O interactions. Simulations of a whole T–O–T layer of phengite indicated the presence of short-range order, but no long-range order was observed. Received: 8 August 2002 / Accepted: 14 February 2003 Acknowledgements The authors are grateful to EPSRC (EJP) and the Royal Society (CIS) for financial support. Monte Carlo simulations were performed on the Mineral Physics Group's Beowulf cluster and the University of Cambridge's High Performance Computing Facility.  相似文献   

12.
Static lattice energy calculations, based on empirical pair potentials, were performed for a large set of structures differing in the arrangement of octahedral cations within the garnet 2 × 2 × 2 supercell. The compositions of these structures varied between Ca3Fe2Ge3O12 and Ca4Ge4O12. The energies were cluster expanded using pair and quaternary terms. The derived ordering constants were used to constrain Monte Carlo simulations of temperature-dependent mixing properties in the ranges of 1,073–3,673 K and 0–10 GPa. The free energies of mixing were calculated using the method of thermodynamic integration. The calculations predict a wide miscibility gap between Fe-rich (cubic) and Fe-pure (tetragonal) garnets consistent with recent experimental observations of Iezzi et al. (Phys Chem Miner 32:197–207, 2005). It is shown that the miscibility gap arises due to a very strong cation ordering at the Fe-pure composition, driven by the charge difference between Ca2+ and Ge4+ cations. The structural and thermodynamic analogies between Ca–Ge and Mg–Si systems suggest that a similar miscibility gap should exist between pyrope and Mg–Si-majorite.  相似文献   

13.
Thermodynamic properties for aqueous alkyl sulfides have been compiled and/or estimated through established methods. These properties are used to investigate reactions among various sulfur compounds in a variety of geological environments, ranging from sea floor hydrothermal systems to organic-rich sludge. Using thermodynamic data and the revised Helgeson-Kirkham-Flowers (HKF) equations of state, along with geochemical constraints imposed by the environment, it is possible to estimate the abiotic production of this class of organic sulfur compounds. For example, in hydrothermal systems in which H2 and H2S concentrations are buffered by the pyrite–pyrrhotite–magnetite (PPM) mineral assemblage, calculated equilibrium activities of dimethyl sulfide (DMS) are as high as 10−3 through formation reactions in which the environment contains millimolal concentrations of CO2. Higher activities are obtained when DMS formation from CO is considered and when more reducing mineral assemblages are present.  相似文献   

14.
The experimental multipole electron density, ρ(r), of diopside was derived from high-resolution single-crystal diffraction at room temperature. Its topological analysis revealed predominantly ionic Si–O bonding, as found in electron density studies of other silicates. In particular, the non-bridging Si–O bonds are slightly less ionic in character than the bridging Si–O bonds. The Ca–O and Mg–O bonds are classified as pure closed-shell ionic interactions. An analysis of –∇2ρ(r) showed the presence of maxima around the oxygen atoms, associated to lone pairs domains that are involved in bonds with the surrounding ions. Calculation of atomic basins gave net charges of –1.56(12), 3.11(17), 1.79(13) and 1.88(18) e for O (averaged), Si, Ca and Mg atoms, respectively. O···O interactions between the O atoms at the vertices of the SiO4 tetrahedron were also detected from the topological analysis of ρ(r), and indicate a cooperative interaction among the lone pairs of neighbouring oxygen atoms. All these results were also confirmed by periodic restricted Hartree–Fock (RHF) calculations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
Fluid inclusions hosted in quartz and specular hematite from auriferous (jacutinga) and barren veins in the Quadrilátero Ferrífero (QF) have been studied using conventional and near infrared microscopy, respectively. The mineralization consists of veins that cross-cut metamorphosed iron formation (itabirite) of the Paleoproterozoic Itabira Group. The sample suite comprises hematite from veins from the low-strain domain in the W and SW of the study area, as well as hematite samples from the eastern high-strain domain in the central and NE parts of the QF. Halogen ratios of fluid inclusions in quartz and hematite from all studied deposits are consistent with a fluid evolved from dissolving and reprecipitating halite that was subsequently diluted. Fluid inclusions hosted in quartz and hematite are characterized by consistent Na/K ratios and considerable SO4 contents, and suggest similar formation conditions and, perhaps, fluid origin from a common source. Na/K and Na/Li fluid mineral geothermometers indicate water–rock interaction at approximately 340±40°C. Hematites from the high-strain domain contain fluid inclusion assemblages of high-temperature aqueous-carbonic and multiphase high-salinity, high-temperature aqueous inclusions probably due to fluid immiscibility in the system H2O–NaCl–CO2. Fluid inclusions hosted in hematite from barren veins in the low-strain domain, as well as in hematite from jacutinga-type mineralization from the central part of the QF, only host multiphase aqueous fluid inclusions all showing narrow ranges of salinity (7.2–11.7 wt.% NaCl equiv.) and homogenization temperatures (148 to 229°C). Lower homogenization temperatures and the absence of CO2-rich inclusions in specular hematite from these occurrences are attributed to carbonate precipitation and/or CO2 escape due to cooling during fluid migration from the high- to the low-strain domain. Pb–Pb and U–Pb systematics of gold, hematite and hematite-hosted fluid inclusions in combination with geochemical evidence indicate distinct sources for Pd, Au, and Pb. The formation of specular hematite veins may be related to retrograde metamorphic fluids being released during the Brazilian orogenic cycle (600–700 Ma). The Pb isotopic characteristics of all samples are readily reconciled in a simple model that involves two different Paleoproterozoic or Archean source lithologies for lead and reflects contrasting depths of fluid percolation during the Brasiliano orogeny.  相似文献   

16.
Reaction textures, fluid inclusions, and metasomatic zoning coupled with thermodynamic calculations have allowed us to estimate the conditions under which a biotite–hornblende gneiss from the Kurunegala district, Sri Lanka [hornblende (NMg=38–42) + biotite (NMg=42–44) + plagioclase + quartz + K-feldspar + ilmenite + magnetite] was transformed into patches of charnockite along shear zones and foliation planes. Primary fluid inclusion data suggest that two immiscible fluids, an alkalic supercritical brine and almost pure CO2, coexisted during the charnockitisation event and subsequent post-peak metamorphic evolution of the charnockite. These metasomatic fluids migrated through the amphibolite gneiss along shear zones and into the wallrock under peak metamorphic conditions of 700–750 °C, 5–6 kbar, and afl H2O=0.52–0.59. This resulted in the formation of charnockite patches containing the assemblage orthopyroxene (NMg=45–48) + K-feldspar (Or70–80) + quartz + plagioclase (An28) in addition to K-feldspar microveins along quartz and plagioclase grain boundaries. Remnants of the CO2-rich fluid were trapped as separate fluid inclusions. The charnockite patches show the following metasomatic zonation patterns: – a transition zone with the assemblage biotite (NMg= 49–51) + hornblende (NMg = 47–50) + plagioclase + quartz + K-feldspar + ilmenite + magnetite; – a KPQ (K-feldspar–plagioclase–quartz) zone with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg=45–48) + quartz + ilmenite + magnetite; – a charnockite core with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg = 39–41) + biotite (NMg=48–52) + quartz + ilmenite + magnetite. Systematic changes in the bulk chemistry and mineralogy across the four zones suggest that along with metasomatic transformation, this process may have been complicated by partial melting in the charnockite core. This melting would have been coeval with metasomatic processes on the periphery of the charnockite patch. There is also good evidence in the charnockitic core that a second mineral assemblage, consisting of orthopyroxene (NMg= 36–42) + biotite (NMg=50–51) + K-feldspar (Or70–80) + quartz + plagioclase (An28–26), could have crystallised from a partial melt during cooling from 720 to 660 °C at decreasing afl H2O from 0.67 to 0.5. Post-magmatic evolution of charnockite at T < 700 °C resulted in fluids being released during the crystallisation of the charnockitic core. These gave rise to the formation of late stage rim myrmekites along K-feldspar grain boundaries as well as late stage biotite, cummingtonite, and carbonates. Received: 15 September 1999 / Accepted: 8 June 2000  相似文献   

17.
Changes in the UV spectra of As(OH)3 solutions with variations in pH and temperature have recently been used to determine the temperature dependence of the pKa of the acid. In previous studies I used quantum mechanical techniques to study changes in structure and vibrational spectra as a function of pH for arsenites and thioarsenites. I previously calculated UV spectra for ``molecular' minerals, like realgar As4S4. Here I use a number of different quantum mechanical methods, both Hartree-Fock and density functional theory based, to calculate the UV spectra for both a related simple well-characterized gas-phase molecule PF3 and for As(OH)3 and As(SH)3 and their conjugate anions and some neutral and anionic oligomers in aqueous solution. For the monomeric species small numbers of water molecules have been explicitly included, in a supermolecule or microsolvation approach. I find that UV absorption energies accurate to a few tenths of an eV can be obtained both for gas- phase PF3 and for neutral arsenious acid in aqueous solution, for which the UV absorption maximum is calculated to occur around 6.5 eV, consistent with experiment. Accurate calculation of the UV energies for arsenite anions in aqueous solution is much more difficult, since basis set size and solvation effects are considerably larger than for the neutral molecules, but fairly reliable results can still be obtained. Deprotonation is found to reduce the lowest calculated UV transition energy by about half an eV. Oligomerization also reduces the lowest calculated UV energy by at least half an eV. Replacement of one or all the –OH groups by –SH groups reduces the lowest calculated UV energies by about 2 eV. UV excitation energies have been calculated for oligomeric species as large as As3E3(EH)3 and As4E6, where E = O, S, and may be useful for identifying such species in solution.  相似文献   

18.
The relation of two well-known ancient carbonate deposits to hydrocarbon seepage was confirmed by this study. Archaea are found to be associated with the formation of Oxfordian seep carbonates from Beauvoisin and with a Miocene limestone from Marmorito ("tube-worm limestone"). Carbonates formed due to a mediation by archaea exhibit extremely positive or extremely negative δ13Ccarbonate values, respectively. Highly positive values (+15‰) reflect the use of 13C-enriched CO2 produced by methanogenesis. Low δ13C values of the Marmorito carbonates (–30‰) indicate the oxidation of seepage-derived hydrocarbons. Likewise, the δ13C content of specific tail-to-tail linked isoprenoids, biomarkers for archaea, was found to be strikingly depleted in these samples (as low as –115‰). The isotopic signatures corroborate that archaea were involved in the cycling of seepage-derived organic carbon at the ancient localities. Another Miocene limestone ("Marmorito limestone") shows a strong imprint of methanotrophic bacteria as indicated by δ13C values of carbonate as low as –40‰ and biomarker evidence. Epifluorescence microscopy and field-emission scanning electron microscopy revealed that bacterial biofilms were involved in carbonate aggregation. In addition to lucinid bivalves previously reported from both localities, we infer that sponges from Beauvoisin and tube worms from Marmorito depended on chemosynthesis as well. Low δ13C values of nodules related to sponge taphonomy (–27‰) indicate that sponges might have been linked to an enhanced hydrocarbon oxidation. Tube worm fossils from Marmorito closely resemble chemosynthetic pogonophoran tube worms from Recent cold seeps and are embedded in isotopically light carbonate (δ13C –30‰). Received: 13 October 1998 / Accepted: 5 February 1999  相似文献   

19.
Quartz–carbonate–chlorite veins were studied in borehole samples of the RWTH-1 well in Aachen. Veins formed in Devonian rocks in the footwall of the Aachen thrust during Variscan deformation and associated fluid flow. Primary fluid inclusions indicate subsolvus unmixing of a homogenous H2O–CO2–CH4–(N2)–Na–(K)–Cl fluid into a H2O–Na–(K)–Cl solution and a vapour-rich CO2–(H2O, CH4, N2) fluid. The aqueous end-member composition resembles that of metamorphic fluids of the Variscan front zone with salinities ranging from 4 to 7% NaCl equiv. and maximum homogenisation temperatures of close to 400°C. Pressure estimates indicate a burial depth between 4,500 and 8,000 m at geothermal gradients between 50 and 75°C/26 MPa, but pressure decrease to sublithostatic conditions is also indicated, probably as a consequence of fracture opening during episodic seismic activity. A second fluid system, mainly preserved in pseudo-secondary and secondary fluid inclusions, is characterised by fluid temperatures between 200 and 250°C and salinities of <5% NaCl equiv. Bulk stable isotope analyses of fluids released from vein quartz, calcite, and dolomite by decrepitation yielded δDH2O values from −89 to −113 ‰, δ13CCH4 from −26.9 to −28.9‰ (VPDB) and δ13CCO2 from −12.8 to −23.3‰ (VPDB). The low δD and δ13C range of the fluids is considered to be due to interaction with cracked hydrocarbons. The second fluid influx caused partial isotope exchange and disequilibrium. It is envisaged that an initial short lived flux of hot metamorphic fluids expelled from the epizonal metamorphic domains of the Stavelot–Venn massif. The metamorphic fluid was focused along major thrust faults of the Variscan front zone such as the Aachen thrust. A second fluid influx was introduced from formation waters in the footwall of the Aachen thrust as a consequence of progressive deformation. Mixing of the cooler and lower salinity formation water with the hot metamorphic fluid during episodic fluid trapping resulted in an evolving range of physicochemical fluid inclusion characteristics.  相似文献   

20.
This study presents the first unequivocal identification of natural radiation-induced defects in illites. Middle Proterozoic illites related to unconformity-type uranium deposits of Canada and Australia were studied using electron paramagnetic resonance (EPR) spectroscopy at X- and Q-band frequencies. The saturation behaviour of EPR spectra as a function of power demonstrates that native defects of illites are different from those known in other clays as kaolinite, dickite or smectite. Q-band spectra indicate the presence of several––at least two––native defects. The EPR signal is dominated by an axially distorted spectrum with apparent principal components as follows: g  = 2.032 and g  = 1.993. The corresponding defect is named as Ai center. The study of oriented specimen confirms the strong anisotropy, and shows that the main defect has its g component perpendicular to the (ab) plane of illite. These defects in illite correspond to electron holes located on oxygen atoms of the structure and likely associated to Si, according to the lack of hyperfine structure. The Ai center in illite has similar EPR parameters to the A center in kaolinite and dickite. The isochronal annealing data suggest that illite can be used as a dosimeter in the geosphere. However, the determination of half-life and activation energy of the Ai center requires additional work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号