首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique for autonomous underwater vehicle route planning   总被引:1,自引:0,他引:1  
If an underwater vehicle is to be completely autonomous, it must have the ability to plan paths around obstacles in order to operate safely. Many solutions to the problem of planning the path of a robot around obstacles have been proposed, but all are limited in some way. An algorithm using artificial potential fields to aid in path planning is presented. The planning consists of applying potential fields around obstacles and using these fields to select a safe path. The advantage of using potential fields is that they offer a relatively fast and effective way to solve for safe paths. A trial path is chosen and then modified under the influence of the potential field until an appropriate path is found. By considering the entire path, the problem of being trapped in a local minimum is greatly reduced, allowing the method to be used for global planning. The algorithm was tried with success on many different planning problems. The examples provided illustrate the algorithm's application to two- and three-dimensional planning problems  相似文献   

2.
A randomized kinodynamic path planning algorithm based on the incremental sampling-based method is proposed here as the state-of-the-art in this field applicable in an autonomous underwater vehicle. Designing a feasible path for this vehicle from an initial position and velocity to a target position and velocity in three-dimensional spaces by considering the kinematic constraints such as obstacles avoidance and dynamic constraints such as hard bounds and non-holonomic characteristic of AUV are the main motivation of this research. For this purpose, a closed-loop rapidly-exploring random tree (CL-RRT) algorithm is presented. This CL-RRT consists of three tightly coupled components: a RRT algorithm, three fuzzy proportional-derivative controllers for heading and diving control and a six degree-of-freedom nonlinear AUV model. The branches of CL-RRT are expanded in the configuration space by considering the kinodynamic constraints of AUV. The feasibility of each branch and random offspring vertex in the CL-RRT is checked against the mentioned constraints of AUV. Next, if the planned branch is feasible by the AUV, then the control signals and related vertex are recorded through the path planner to design the final path. This proposed algorithm is implemented on a single board computer (SBC) through the xPC Target and then four test-cases are designed in 3D space. The results of the processor-in-the-loop tests are compared by the conventional RRT and indicate that the proposed CL-RRT not only in a rapid manner plans an initial path, but also the planned path is feasible by the AUV.  相似文献   

3.
The Advanced Marine Systems Lab at Florida Atlantic University has developed a new ultramodular plastic mini autonomous underwater vehicle (AUV), called the Morpheus, for littoral military and coastal oceanographic sampling, survey, and mapping. The name Morpheus was chosen because the Greek god Morpheus could change shape or "morph." The higher degree of modularity of the Morpheus AUV allows it to "morph" or change its size and components for different applications. This vehicle is composed of modular injection-molded plastic pressure vessels and a cabling system that allow the modules to be rearranged without rewiring bulkheads. The plastic pressure vessels are inexpensive, inherently mass-producible, extremely corrosion-resistant, and have low magnetic signatures. The pressure vessels are small but are sized to fit most standard electronic board standards. The mini AUV can be anywhere from 4 to 10 ft in length, depending on its mission. The vehicle architecture is an adaptation of the Ocean Explorer AUV system and uses an ANSI 709.1 (LonTalk) distributed control network for connecting all sensors and actuator subsystems as smart nodes. The modularity in containers, control, and power makes this vehicle rapidly reconfigurable and easy to repair or upgrade. This paper will present details of the motivation, design, and construction of the new mini AUV. The Morpheus was deployed during the summer of 2000 in field exercises for very shallow and shallow water mine counter measures. Some results from these tests will be presented  相似文献   

4.
A discrete time-delay control (DTDC) law for a general six degrees of freedom unsymmetric autonomous underwater vehicle (AUV) is presented. Hydrodynamic parameters like added mass coefficients and drag coefficients, which are generally uncertain, are not required by the controller. This control law cancels the uncertainties in the AUV dynamics by direct estimation of the uncertainties using time-delay estimation technique. The discrete-time version of the time-delay control does not require the derivative of the system state to be measured or estimated, which is required by the continuous-time version of the controller. This particularly provides an advantage over continuous-time controller in terms of computational effort or availability of sensors for measuring state derivatives, i.e., linear and angular accelerations. Implementation issues for practical realization of the controller are discussed. Experiments on a test-bed AUV were conducted in depth, pitch, and yaw degrees of freedom. Results show that the proposed control law performs well in the presence of uncertainties.  相似文献   

5.
Attitude control systems for autonomous underwater vehicles are often implemented with separate controllers for pitch motion in the vertical plane and yaw motion in the horizontal plane. We propose a novel time-varying model for a streamlined autonomous underwater vehicle that explicitly displays the coupling between yaw and pitch motion due to nonzero roll angle and/or roll rate. The model facilitates the use of a multi-input multi-output H control design that is robust to yaw-pitch coupling. The efficacy of our approach is demonstrated with field trials.  相似文献   

6.
This paper presents an improved active disturbances rejecter control (ADRC) for path following control of autonomous underwater vehicles under significant fast-varying disturbances caused by waves and sea currents. Two significant and efficient improvements are introduced to the traditional ADRC in order to accomplish this task. First, a generalized ESO (GESO) and Harmonic ESO (HESO) were designed to achieve a high disturbances estimation quality. Secondly, two AUV path following controllers based on ADRC-GESO and ADRC-HESO were designed to ensure a high performance tracking in presence of periodic-type disturbances. Finally, numerical simulations were performed and the obtained results showed very significant enhancements of robustness and tracking accuracy by the proposed methods compared to conventional ADRC.  相似文献   

7.
Olfactory-based mechanisms have been hypothesized for biological behaviors including foraging, mate-seeking, homing, and host-seeking. Autonomous underwater vehicles (AUVs) capable of such chemical plume tracing feats would have applicability in searching for environmentally interesting phenomena, unexploded ordinance, undersea wreckage, and sources of hazardous chemicals or pollutants. This article presents an approach and experimental results using a REMUS AUV to find a chemical plume, trace the chemical plume to its source, and maneuver to reliably declare the source location. The experimental results are performed using a plume of Rhodamine dye developed in a turbulent, near-shore, oceanic fluid flow.  相似文献   

8.
Jenhwa Guo   《Ocean Engineering》2006,33(17-18):2369-2380
This work develops a control system for the waypoint-tracking of a biomimetic autonomous underwater vehicle (BAUV). The BAUV swims forward by oscillating its body and caudal fin. It turns by bending its body and caudal fin toward the turning direction. The control algorithm uses the oscillating frequency to control the forward velocity, and applies a body-spline offset parameter to control the heading velocity. The motion of the BAUV is undulatory, so moving averages of swimming velocity and heading errors are used as feedback signals. The stability of the control system is discussed using a Lyapunov function. Finally, the effectiveness of the control algorithm is experimentally confirmed.  相似文献   

9.
Seagliders are small, reusable autonomous underwater vehicles designed to glide from the ocean surface to a programmed depth and back while measuring temperature, salinity, depth-averaged current, and other quantities along a sawtooth trajectory through the water. Their low hydrodynamic drag and wide pitch control range allow glide slopes in the range 0.2 to 3. They are designed for missions in a range of several thousand kilometers and durations of many months. Seagliders are commanded remotely and report their measurements in near real time via wireless telemetry. The development and operation of Seagliders and the results of field trials in Puget Sound are reported  相似文献   

10.
The Marine Systems Engineering Laboratory of the University of New Hampshire has ported the University of Utah's Portable Common LISP Subset (PLCS) to the experimental autonomous vehicle (EAVE) underwater autonomous vehicle. Using Common LISP in the EAVE autonomous vehicle is expected to improve programmer productivity and software portability. Using the LISP interpreter allows for software changes to be made while in the field, thus saving time during vehicle operations. Issues concerning the operation of LISP in a real-time environment, such as the impact of garbage collection (GC), have been resolved by using an efficient version of Common LISP and by using LISP) at the high-end of a time-based software hierarchy  相似文献   

11.
In this paper, adaptive control of low speed bio-robotic autonomous underwater vehicles (BAUVs) in the dive plane using dorsal fins is considered. It is assumed that the model parameters are completely unknown and only the depth of the vehicle is measured for feedback. Two dorsal fins are mounted in the horizontal plane on either side of the BAUV. The normal force produced by the fins, when cambered, is used for the maneuvering. The BAUV model considered here is non-minimum phase. An indirect adaptive control system is designed for the depth control using the dorsal fins. The control system consists of a gradient based identifier for online parameter estimation, an observer for state estimation, and an optimal controller. Simulation results are presented which show that the adaptive control system accomplishes precise depth control of the BAUV using dorsal fins in spite of large uncertainties in the system parameters.  相似文献   

12.
13.
Model-based feedback control of autonomous underwater gliders   总被引:6,自引:0,他引:6  
We describe the development of feedback control for autonomous underwater gliders. Feedback is introduced to make the glider motion robust to disturbances and uncertainty. Our focus is on buoyancy-propelled, fixed-wing gliders with attitude controlled by means of active internal mass redistribution. We derive a nonlinear dynamic model of a nominal glider complete with hydrodynamic forces and coupling between the vehicle and the movable internal mass. We use this model to study stability and controllability of glide paths and to derive feedback control laws. For our analysis, we restrict to motion in the vertical plane and consider linear control laws. For illustration, we apply our methodology to a model of our own laboratory-scale underwater glider  相似文献   

14.
This work demonstrates the feasibility of applying a sliding mode fuzzy controller to motion control and line of sight guidance of an autonomous underwater vehicle. The design method of the sliding mode fuzzy controller offers a systematical means of constructing a set of shrinking-span and dilating-span membership functions for the controller. Stability and robustness of the control system are guaranteed by properly selecting the shrinking and dilating factors of the fuzzy membership functions. Control parameters selected for a testbed vehicle, AUV-HM1, are evaluated through tank and field experiments. Experimental results indicate the effectiveness of the proposed controller in dealing with model uncertainties, non-linearities of the vehicle dynamics, and environmental disturbances caused by ocean currents and waves.  相似文献   

15.
In the case of Autonomous Underwater Vehicle(AUV) navigating with low speed near water surface,a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance.Robust control is applied,which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer.Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system.For parameter uncertainty of motion model,the controller is designed with mixed-sensitivity method based on H-infinity robust control theory.Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.  相似文献   

16.
In the paper, a hydrodynamic model including the characteristics of maneuvering and seakeeping is developed to simulate the six-degree of freedom motions of the underwater vehicle steering near the sea surface. The corresponding wave exciting forces on the underwater vehicle moving in waves are calculated by the strip theory, which is based on the source distribution method. With the hydrodynamic coefficients relevant to the maneuvering and seakeeping, the fourth-order Runge–Kutta numerical method is adopted to solve the equations of motions and six-degrees of freedom of the motions for the underwater vehicle steering near the free surface can be obtained. The wave effect on the corresponding motions of the underwater vehicle is investigated and some interesting phenomena with respect to different wave frequencies and headings are observed. The hydrodynamic numerical model developed here can be served as a valuable tool for analyzing the ascending and descending behaviors of the underwater vehicle near the sea surface.  相似文献   

17.
Kinematic global positioning system (GPS) positioning and underwater acoustic ranging can combine to locate an autonomous underwater vehicle (AUV) with an accuracy of /spl plusmn/30cm (2-/spl sigma/) in the global International Terrestrial Reference Frame 2000 (ITRF2000). An array of three precision transponders, separated by approximately 700 m, was established on the seafloor in 300-m-deep waters off San Diego. Each transponder's horizontal position was determined with an accuracy of /spl plusmn/8 cm (2-/spl sigma/) by measuring two-way travel times with microsecond resolution between transponders and a shipboard transducer, positioned to /spl plusmn/10 cm (2-/spl sigma/) in ITRF2000 coordinates with GPS, as the ship circled each seafloor unit. Travel times measured from AUV to ship and from AUV to transponders to ship were differenced and combined with AUV depth from a pressure gauge to estimate ITRF2000 positions of the AUV to /spl plusmn/1 m (2-/spl sigma/). Simulations show that /spl plusmn/30 cm (2-/spl sigma/) absolute positioning of the AUV can be realized by replacing the time-difference approach with directly measured two-way travel times between AUV and seafloor transponders. Submeter absolute positioning of underwater vehicles in water depths up to several thousand meters is practical. The limiting factor is knowledge of near-surface sound speed which degrades the precision to which transponders can be located in the ITRF2000 frame.  相似文献   

18.
The aim of this study is to solve the problem of poor tracking in autonomous underwater vehicle (AUVs) that are operating based on traditional line-of-sight (LOS) method when tracking different paths in a complex marine environment. An adaptive-LOS (ALOS) guidance law with drift angle compensation is proposed, and is employed to calculate the AUV’s desired course (direction of velocity) and heading. First, an appropriate look-ahead distance is derived by the ALOS guidance law in consideration of the predefined path curvature, real-time tracking error and speed of the AUV. Subsequently, proper compensation is provided with respect to the actual drift angle. Compared with traditional LOS operation, this method flexibly adjusts to a suitable look-ahead distance while considering many related factors, providing a better path following performance. Both simulation and experimental results are presented to validate the effectiveness of this method.  相似文献   

19.
自治水下机器人在深海采矿系统湖试中的应用   总被引:1,自引:1,他引:0  
以大洋采矿前期的湖试为例,介绍了AUV在矿产资源调查和深海采矿中的应用。在深海采矿系统作业前期,利用AUV调查湖底的地形地貌、结核的分布与覆盖率,确定集矿机作业地点的大地坐标。在深海采矿系统作业后期,利用AUV调查集矿机在湖底的行走轨迹和压陷深度,估算回采率。  相似文献   

20.
This paper proposes a genetic algorithm (GA) for path planning of an autonomous underwater vehicle in an ocean environment characterized by strong currents and enhanced space-time variability. The goal is to find a safe path that takes the vehicle from its starting location to a mission-specified destination, minimizing the energy cost. The GA includes novel genetic operators that ensure the convergence to the global minimum even in cases where the structure (in space and time) of the current field implies the existence of different local minima. The performance of these operators is discussed. The proposed algorithm is suitable for situations in which the vehicle has to operate energy-exhaustive missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号