首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eclogites within exhumed continental collision zones indicate regional burial to depths of at least 60 km, and often more than 100 km in the coesite‐stable, ultra‐high pressure (UHP) eclogite facies. Garnet, omphacitic pyroxene, high‐Si mica, kyanite ± coesite should grow at the expense of low‐P minerals in most felsic compositions, if equilibrium obtained at these conditions. The quartzofeldspathic rocks that comprise the bulk of eclogite facies terranes, however, contain mainly amphibolite facies, plagioclase‐bearing assemblages. To what extent these lower‐P minerals persisted metastably during (U)HP metamorphism, or whether they grew afterwards, reflects closely upon crustal parameters such as density, strength and seismic character. The Nordfjord area in western Norway offers a detailed view into a large crustal section that was subducted into the eclogite facies. The degree of transformation in typical pelite, paragneiss, granitic and granodioritic gneiss was assessed by modelling the equilibrium assemblage, comparing it with existing parageneses in these rocks and using U/Th–Pb zircon geochronology from laser ablation ICPMS to establish the history of mineral growth. U–Pb dates define a period of zircon recrystallization and new growth accompanying burial and metamorphism lasting from 430 to 400 Ma. Eclogite facies mafic rock (~2 vol.% of crust) is the most transformed composition and records the ambient peak conditions. Rare garnet‐bearing pelitic rocks (<10 vol.% of crust) preserve a mostly prograde mineral evolution to near‐peak conditions; REE concentrations in zircon indicate that garnet was present after 425 Ma and feldspar broke down after 410 Ma. Felsic gneiss – by far the most abundant rock type – is dominated by quartz + biotite + feldspar, but minor zoisite/epidote, phengitic white mica, garnet and rutile point to a prograde HP overprint. Relict textures indicate that much of the microstructural framework of plagioclase, K‐feldspar, and perhaps biotite, persisted through at least 25 Ma of burial, and ultimately UHP metamorphism. The signature reaction of the eclogite facies in felsic rocks – jadeite/omphacite growth from plagioclase – cannot be deduced from the presence of pyroxene or its breakdown products. We conclude that prograde dehydration in orthogneiss leads to fluid absent conditions, impeding equilibration beyond ~high‐P amphibolite facies.  相似文献   

2.
Summary The Austroalpine Ötztal Basement (AOB) was affected by three metamorphic events during the Caledonian (ca. 450 Ma), Variscan (ca. 320 Ma) and Eo-Alpine (ca. 90 Ma) orogeny. The Variscan and Alpine events are clearly distinguished in terms of pressure and temperature evolution. Significant differences were observed between textures and densities of fluid inclusions of Variscan and Alpine age. Microthermometric and Raman spectroscopic investigations were done on fluid inclusions entrapped in garnet, apatite and quartz. Apatite hosts fluid inclusions of Variscan age which re-equilibrated during the Alpine overprint. Variscan garnets from metasedimentary rocks contain fluid inclusions, which were entrapped during isothermal decompression after the Variscan amphibolite facies temperature peak. The crystallinity of graphite coatings on the walls of fluid inclusions in Variscan garnets from orthogneisses as determined by Raman spectrosocopy indicates formation temperatures in excess of 550 °C. Superdense CO2 inclusions in quartz indicate isobaric cooling after the Alpine metamorphic temperature peak. The textures and the high density of late aqueous inclusions suggest their entrappment during the Alpine event. Raman spectra from hydrohalite and antarcticite support the presence of Na and Ca in the Variscan metamorphic fluid. Metasomatic reactions involving feldspars lead to the enrichment of these two elements in the fluid phase. The similarities of the chemical compositions of the metamorphic fluids within Variscan and Alpine inclusions suggest minor compositional changes with time and corroborate efficient rock buffering of the fluids. The combination of data from fluid inclusions, petrographic observations and published geothermobarometric data yields an improved and more detailed picture of the Variscan and Alpine metamorphic P-T evolution.
Flüssigkeitseinschlüsse im Zusammenhang mit variszischer und alpidischer Metamorphose im Ötztalkristallin (Ostalpen)
Zusammenfassung Das Ötztalkristallin wurde von drei Metamorphoseereignissen während der kaledonischen (ca. 450 Ma), variszischen (ca. 320 Ma) und alpidischen (ca. 90 Ma) Gebirgsbildung Beeinflußt. Die variszischen und alpidischen Ereignisse sind in Bezug auf ihre Druck- und Temperaturentwicklung eindeutig unterscheidbar. Deutliche Unterschiede wurden in den Texturen und den Dichte variszischer und alpidischer Flüssigkeitseinschlüsse beobachtet. Mikrothermometrische und Raman-spektroskopische Untersuchungen wurden an in Granat, Apatit und Quarz eingeschlossenen Flüssigkeitseinschlüssen durchgeführt. Apatit führt variszische Flüssigkeitseinschlüsse, die während der alpidischen Überprägung reequilibrierten. Varizischer Granat aus metasedimentären Gesteinen enthält Flüssigkeitseinschlüsse, die während der isothermalen Druckentlastung nach dem variszischen amphibolitfaziellen Temperaturhö-hepunkt eingefangen wurden. Die Kristallinität von Graphitausfdllungen an den Wänden von Flüssigkeitseinschlussen in variszischen Orthogneis-Granaten wurde mit Raman Spektroskopie bestimmt und zeigt Bildungstemperaturen über 550°C an. Hochdichte CO2-Einschlfisse in Quarz zeigen isobares Abkühlen nach dem alpidischen Metamorphosehöhepunkt an. Die Texturen und die hohe Dichte von späten wässrigen Einschlussen legen deren Einfangen während des alpidischen Ereignisses nahe. RamanSpektren von Hydrohalit und Antarcticit unterstützen das Vorhandensein von Na und Ca im variszisch metamorphen Fluid. Metasomatische Reaktionen unter Beteiligung von Feldspat führten zur Anreicherung dieser beiden Elemente in der fluiden Phase. Die Ähnlichkeiten den chemischen Zusammensetzung des metamorphen Fluides in variszischen und alpidischen Einschlussen legt eine geringe zeitliche Änderung der Zusammensetzung nape und bestätigt eine effiziente Bufferung den Fluide durch das Gestein. Die Kombination von Flüssigkeitseinschlußdaten, petrographischer Beobachtung und Geothermobarometrie aus der Literatur liefert ein verbessertes und detailiertes Bild der variszischen und alpidischen metamorphen P-T Entwicklung.


With 8 Figures  相似文献   

3.
The Scandinavian Caledonides contain several non-cogenetic eclogite-bearing terranes that were metamorphosed before the main orogenic stage in Scandian time (430–395 Ma). Although petrological and geochronological data from these terranes have provided essential information on the geodynamic history of the Caledonian orogenic cycle, the general picture is still patchy. To refine existing geodynamic models, we have dated the eclogite occurrence in the Jæren nappe, SW Norway, by Lu–Hf and Sm–Nd geochronology. Five out of the six studied samples provide a weighted mean Lu–Hf age of 469.9 ± 1.2 Ma (±2σ). One sample provided a significantly younger age of 457.9 ± 2.4 Ma. Garnet from the younger sample grew exclusively at eclogite facies conditions. In contrast, garnet from the other samples comprises prograde cores and peak metamorphic rims. Age estimates that take Lu-contributions of each zone into account provide an age of 471.0 ± 0.9 Ma for the cores and suggest a ca. 455 Ma age for the rims, which is identical to the bulk-garnet age of the younger sample. The same pattern is indicated by Sm–Nd ages, although these are relatively imprecise and reflect isotopic disturbance during thermal overprinting upon exhumation. The data define a new high-pressure age population for the Scandinavian Caledonides, which allows more detailed insight into the subduction history that affected the Baltoscandian margin before Scandian continental collision. Furthermore, this study highlights the potential complexities involved in garnet geochronology and shows the strength of Lu–Hf dating for unraveling the geochronological record of HP rocks.  相似文献   

4.
Pressure estimates for amphibolite-facies metamorphism at Plutonic Gold Mine (Plutonic), Marymia Inlier, Western Australia, were recently revised significantly upwards from ~4 ± 2 kbar/550–600°C to ≥8 kbar/~600°C, based on the calculated stability fields for mineral assemblages in garnet-free mafic rocks. These conditions are anomalous in the context of the Yilgarn Craton. Here, we present new mineral equilibria calculations for rare garnet-bearing rock types from Plutonic that confirm those higher pressure estimates, and provide confidence that the determinations of metamorphic conditions based only on results from metamorphosed mafic rocks are robust and reliable. Taken together, the new estimates (7.3–8.2 kbar/580–590°C) from the garnet-bearing rocks, and the existing results from the mafic rocks, provide evidence that, most probably during the late Archean, rocks now exposed along the northern margin of the Yilgarn Craton underwent substantial increases in pressure, which was likely followed by rapid exhumation.  相似文献   

5.
The Proterozoic anorthosite–mangerite–charnockite complex dominating the Lindås Nappe in the Scandinavian Caledonides was locally eclogitized in the southwestern part of the nappe during the Caledonian orogeny, whereas only amphibolite facies assemblages are recorded in the rest of the nappe. Sveconorwegian granulites of anorthositic to jotunitic composition in the northernmost eclogite-free exposures of the nappe exhibit large garnet phenoblasts (ca. 900°C) that are fractured and partly replaced by a Caledonian symplectitic amphibolite facies assemblage (ca. 515°C). Metamorphic zircon attributed to this garnet breakdown is dated by ID-TIMS U–Pb at 430 ± 3 Ma, suggesting that the amphibolite facies overprint was coeval with the formation of eclogite 30 km further south, probably implying that the section across the nappe represents a Caledonian pressure gradient. The rocks also preserve a complex Sveconorwegian history including an age of 969 ± 6 Ma, which we interpret as dating magmatic emplacement of jotunitic–anorthositic portions of the complex, 936 ± 12 Ma reflecting the granulite facies metamorphism, and 908 ± 16 Ma, representing a late generation of zircon best explained as having formed by metasomatic processes. Caledonian shearing severely deformed zircon grains in an amphibolite facies shear zone, resetting their U–Pb systems, and forming new ones, hereby also demonstrating a case of resetting and recrystallization of low-U zircon. Our data, gained from diverse lithologies, illustrate several processes involved in making and resetting zircon as well as indicate the contemporaneous evolution and similar origin of the Lindås Nappe and the Jotun Nappe Complex.  相似文献   

6.
Within the Ötztal Complex (ÖC), migmatites are the only geological evidence of the pre-Variscan metamorphic evolution, which led to the occurrence of partial anatexis in different areas of the complex. We investigated migmatites from three localities in the ÖC, the Winnebach migmatite in the central part and the Verpeil- and Nauderer Gaisloch migmatite in the western part. We determined metamorphic stages using textural relations and electron microprobe analyses. Furthermore, chemical microprobe ages of monazites were obtained in order to associate the inferred stages of mineral growth to metamorphic events. All three migmatites show evidence for a polymetamorphic evolution (pre-Variscan, Variscan) and only the Winnebach migmatite shows evidence for a P-accentuated Eo-Alpine metamorphic overprint in the central ÖC. The P-T data range from 670–750 °C and < 2.8 kbar for the pre-Variscan event, 550–650 °C and 4–7 kbar for the Variscan event and 430–490 °C and ca. 8.5 kbar for the P-accentuated Eo-Alpine metamorphic overprint. U-Th-Pb electron microprobe dating of monazites from the leucosomes from all three migmatites provides an average age of 441 ± 18 Ma, thus indicating a pervasive Ordovician-Silurian metamorphic event in the ÖC.  相似文献   

7.
8.
9.
In situ U–Pb dating and trace element analysis of zircons, combined with a textural relationship investigation in thin section, is a powerful tool to constrain the ultra high-pressure stage of high-grade metamorphism. Two types of zircon grains have been identified in thin sections of a retrograde eclogite from the main hole of the Chinese Continental Scientific Drill project in the Sulu UHP terrane. Type 1 zircon grains occur as inclusions in fresh garnet and omphacite, and Type 2 zircon grains were found in symplectite around omphacite. The fresh rims of Type 1 zircons and mantles of a few Type 2 zircons exhibit remarkably lower REE, Y, Nb and Ta contents than the inherited zircon cores, suggesting coeval growth with garnet, rutile and apatite during UHP metamorphism. These may have formed in the UHP metamorphism and survived retrograde metamorphism. The weighted average 206Pb/238U age of these zircon domains (230 ± 4 Ma, 2σ) agrees well with the published age of coesite-bearing zircon separates (230 ± 1 Ma, 2σ), suggesting that the peak UHP metamorphism in the Sulu terrane may have occurred at ~ 230 Ma.Zircon domains surrounded or cut across by symplectite could have been altered by retrograde metamorphism. Together, they provide a younger weighted average 206Pb/238U age of 209 ± 4 Ma (2σ). These retrograde zircon domains have similar REE compositions to the ~ 230 Ma UHP zircon domains. These observations imply that the ~ 209 Ma zircon domains could have formed by fluid activity-associated alterations in the amphibolite-facies metamorphism, which could have resulted in the complete loss of Pb but not REEs in these domains.  相似文献   

10.
The first evidence for ultrahigh-pressure (UHP) metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides is recorded by kyanite-bearing eclogite, found in a basic dyke within a garnet peridotite body exposed close to the lake Friningen in northern Jämtland (central Sweden). UHP metamorphic conditions of ~ 3 GPa and 800 °C, within the stability field of coesite, are constrained from geothermobarometry and calculated phase equilibria for the peak-pressure assemblage garnet + omphacite + kyanite + phengite. A prograde metamorphic evolution from a lower P–T (1.5–1.7 GPa and 700–750 °C) stage during subduction is inferred from inclusions of pargasitic amphibole, zoisite and kyanite in garnet cores. The post-UHP evolution is constrained from breakdown textures, such as exsolutions of kyanite and silica from the Ca-Eskola clinopyroxene. Near isothermal decompression of eclogite to lower crustal levels (~ 0.8–1.0 GPa ) led to formation of sapphirine, spinel, orthopyroxene and diopside at granulite facies conditions. Published age data suggest a Late Ordovician (460–445 Ma) age of the UHP metamorphism, interpreted to be related to subduction of Baltoscandian continental margin underneath an outboard terrane, possibly outermost Laurentia, during the final stages of closure of the Iapetus Ocean. The UHP rocks were emplaced from the hinterland collision zone during Scandian thrusting of the nappes onto the Baltoscandian foreland basin and platform. The record of P–T conditions and geochonological data from UHP rocks occurring within the allochthonous units of the Scandinavian Caledonides indicate that Ordovician UHP events may have affected much wider parts of the orogen than previously thought, involving deep subduction of the continental crust prior to final Scandian collision between Baltica and Laurentia.  相似文献   

11.
We integrate petrography and SIMS REE analyses of garnet and polyphase zircon from a pelitic granulite adjacent to the Ronda peridotite, Betic Cordillera, southern Spain to constrain the significance of zircon U-Pb geochronology. Sillimanite inclusions in garnet rims suggest that they grew during decompression, and Ca enrichment in their rims records initiation of partial melting. Chondrite-normalised REE profiles of zircon cores are typically magmatic (positive La to Lu slope and Ce anomaly), whereas overgrowths have flat or negatively sloping heavy-REE profiles (Gd-Lu). The presence of rimmed zircon grains only in the garnet rims and the matrix suggests that this zircon phase grew after garnet had already sequestered heavy REEs, a process documented here by progressive depletion of heavy REE in the garnets from centre to rim. Combined with the textural evidence, we suggest that the U-Pb age of 21.3ǂ.3 Ma obtained from the zircon rims dates a point on this decompression path rather than the peak metamorphic pressure.  相似文献   

12.
《Geodinamica Acta》2001,14(6):345-360
In the southeastern Ötztal basement remnants of eo-Alpine high-pressure metamorphism as well as deformation related to the emplacement of these eclogites are preserved. The eo-Alpine age of the two main ductile deformation phases is constrained by Ar-Ar and Rb-Sr mica cooling ages of about 80 Ma, providing a lower, and by deformed Permo-Mesozoic rocks, providing an upper time limit. While high-pressure minerals (M1) are aligned along structures of the first deformation phase (D1), subsequently grown amphibolite facies minerals (M2) are late- to post-kinematic with respect to the third phase (D3). D1 is characterized by non-coaxial deformation producing an E-W oriented stretching lineation, the younger phases D2 and D3 by folding, where the older set of folds strikes N-S, the younger one E-W. These results imply a basic change of tectonic movement direction during the eo-Alpine event. Structural and petrological evidences favour a two-stage exhumation model, where tectonic exhumation (D1, D2 and D3) is correlated with the first stage, statically overprinted under amphibolite facies conditions (M2). As there is no evidence of significant deformation after this stage, erosion and surface uplift most probably represent the relevant processes for the last part of the exhumation path. During this stage the high-pressure rocks were exhumed from amphibolite facies conditions to the surface.  相似文献   

13.
Summary A multi-method approach was applied to derive the age and origin of an orthogneiss body located in the central Kaunertal, western Ötztal Crystalline Basement (ÖCB). The Tieftal orthogneiss body is an internally differentiated, polymetamorphosed epizonal intrusion, embedded in amphibolites. It comprises leucocratic hedenbergite-hornblende-, hornblende- and biotite-hornblende-gneisses, but also some melanocratic rock types. The leucocratic Tieftal gneisses are granitic, have a near eutectic melt composition and share some features of A-type granites, such as high Na2O+K2O(8.07 to 8.58wt%), Zr (379 to 554ppm) and Y (58 to 79ppm) contents. The REE-patterns are rather flat ((La/Yb)N=2.4 to 3.7), with distinct negative Eu anomalies. Single zircon evaporation dating of two samples and Sm-Nd dating of relict magmatic titanite resulted in ages of 487±7, 484±3 and 487±5Ma, respectively. The weighted mean of 485±3Ma is interpreted as the primary crystallization age of the Tieftal orthogneiss body. Rb-Sr whole rock dating results in a well defined regression line, corresponding to an age of 411±9Ma. This age clearly documents at least a partial resetting of the whole rock Rb-Sr system, which is most probably due to subsequent metamorphic overprint. The leucocratic Tieftal gneisses are isotopically rather primitive with an Nd CHUR 485 Ma value of +1.7 and a calculated magmatic initial87Sr/86Sr ratio of 0.7047. These data suggest a major mantle contribution. Most probably, they originated through fractionation of the magmatic precursors of the accompanying tholeiitic metabasites. The more primitive isotopic composition of ÖCB metabasites and some late Archean/early Proterozoic and Cambrian inheritance in Tieftal gneiss zircons suggest some involvement of old crustal rocks, too. The amount of crustal contamination can be calculated to be in the range of 10 to 40%. The Tieftal gneisses and the accompanying metabasites are interpreted as remnants of igneous rocks related to an early Ordovician rifting and incipient formation of new oceanic crust, an event which can be traced throughout the central and western European Variscan and Alpine terranes.
Alter, Genese und geologische Bedeutung einer polymetamorphen felsischen Intrusion im Ötztalkristallin, Tirol, Österreich
Zusammenfassung Ein Vielzahl von Methoden wurde angewandt, um das Alter und die Genese eines Orthogneiskörpers im mittleren Kaunertal, westliches Ötztalkristallin, abzuleiten. Der Tieftal-Orthogneiskörper ist eine in Amphiboliten eingeschaltete, intern differenzierte, polymetamorph überprägte, epizonale Intrusion. Er umfaßt sowohl leukokrate Hedenbergit-Hornblende-, Hornblende- und Biotit-Hornblende-Gneise als auch untergeordnet melanokrate Gesteine. Die leukokraten Tieftal-Gneise besitzen einen granitischen, beinahe einer eutektischen Schmelze entsprechenden Chemismus; einige Parameter wie hohe Na2O+K2O(8.07 bis 8.58Gew%), Zr(379 bis 554ppm) und Y(58 bis 79ppm) Gehalte weisen auf eine A-Typ Affinität hin. Die SEE-Spektren sind nur gering fraktioniert ((La/Yb)N=2.3 bis 3.7) und weisen eine markante negative Eu-Anomalie auf. Einzelzirkon-Evaporationsdatierungen an 2 Proben und eine Sm-Nd Datierung von reliktischem magmatischem Titanit ergeben Alter von 487±7, 484±3 und 487±5Ma. Der gewichtete Mittelwert von 485±3Ma wird als das primäre magmatische Kristallisationsalter des Tieftal-Orthogneiskörpers interpretiert. Eine Rb-Sr Gesamtgesteinsdatierung ergibt eine gut definierte Regressionsgerade mit einem Alter von 411±9Ma. Dieses Alter beweist eine postmagmatische Störung des Rb-Sr Gesamtgesteinssystems, die durch die metamorphen überprägungen verursacht wurde. Die leukokraten Tieftal-Gneise besitzen eine relative primitive isotopische Zusammensetzung mit einem Nd CHUR 485 Ma a Wert von +1.7 und einem zurückgerechneten magmatischen87Sr/86Sr Initialverhältnis von 0.7047. Diese Daten machen eine große Beteiligung von Mantelmaterial wahrscheinlich. Am ehesten entstanden die leukokraten Tieftal-Gneise durch magmatische Fraktionierungsprozesse aus den Ausgangsgesteinen der begleitenden tholeiitischen Metabasite. Die noch primitivere isotopische Zusammensetzung der Metabasite im Ötztalkristallin und spätarchaische/frühproterozoische sowie kambrische Komponenten in den Zirkonen der leukokraten Tieftal-Gneise weisen aber auch auf die Beteiligung alten krustalen Materials hin. Der Anteil der krustalen Komponente liegt im Bereich von 10 bis 40%. Der Tieftal-Orthogneiskörper und die begleitenden Metabasite werden als Relikte magmatischer Gesteine, die während eines frühordovizischen Riftings und der beginnenden Bildung neuer ozeanischer Kruste entstanden sind, gedeutet. Zeugen dieses Vorganges sind in allen variszisch und alpidisch geprägten Gebieten Westund Mitteleuropas zu finden.


With 13 Figures  相似文献   

14.
Mineral assemblages in the Dinggyê area of southern Tibet (28°N; 88°E) provide new insights regarding the poorly understood Eohimalayan metamorphic event in the eastern Himalayan orogen. Major element partitioning thermobarometry of pelitic rocks indicates temperatures of 750–830 K at depths of 14±3 km, consistent with the presence of kyanite, sillimanite, and andalusite schists in the area. Laser and resistance furnace40Ar/39Ar analyses of hornblendes from intercalated amphibolites yield closure ages of 25 Ma. Overlap between the probable range of Ar closure temperatures for these hornblendes and the metamorphic temperatures estimated through thermobarometry suggests that Eohimalayan metamorphism in the Dinggyê area occurred in Late Oligocene time, no more than about 10 million years before the main or Neohimalayan phase of metamorphism in Early to Middle Miocene time. Muscovite, biotite, and K-feldspar40Ar/39Ar ages indicate an important episode of rapid cooling between 16 and 13 Ma, which is interpreted as a signature of tectonic denudation related to movement on N-dipping extensional structures of the South Tibetan detachment system.  相似文献   

15.
International Journal of Earth Sciences - The Ediacaran–Ordovician Meguma Supergroup was thrust over Avalonia basement prior to the intrusion of post-Acadian, ca. 370&nbsp;Ma, S-type...  相似文献   

16.
17.
Partial melting of sulfide ores during prograde metamorphism could have been more prevalent than generally accepted. However, identification of such melting is difficult as sulfide melts do not form glasses and the textures generated on quenching are obliterated due to the tendency of sulfides for ready recrystallization. The polymetallic base metal sulfide deposit at Rajpura–Dariba, Rajasthan, India is a typical stratiform ore metamorphosed to the middle amphibolite facies. The peak metamorphic temperature of 600 °C should have been sufficient to initiate sulfide melting as evident from experimental studies in the ZnS–PbS–Cu2S–FeS2–S system. Further, syn-metamorphic melting of the original SEDEX ore was abetted by the high fS2 condition that prevailed as a consequence of barite dissolution. A Zn–Fe–S melt containing minor Pb, Sb and Cu but no Ag fractionated from an initial melt in the above system resulting in a residual immiscible sulfosalt-bearing PbS melt. The final metallic melts, represented by formation of dyscrasite (Ag3Sb) from the sulfosalt-bearing melt and breithauptite (NiSb) or ullmannite (NiSbS) from the sulfosalt-absent melt, were a product of independent fractional crystallization of the immiscible sulfide and PbS–sulfosalt melts.  相似文献   

18.
The age of Proterozoic granulite facies metamorphism and deformation in the Strangways Metamorphic Complex (SMC) of central Australia is determined on zircon grown in syn-metamorphic and syn-deformational orthopyroxene-bearing, enderbitic, veins. SHRIMP zircon studies suggest that M 1–M 2 and the correlated periods of intense deformation (D 1–D 2) are part of a single tectonothermal event between 1,717±2 and 1,732±7 Ma. It is considered unlikely that the two metamorphic phases (M 1, M 2) suggested by earlier work represent separate events occurring within 10–25 Ma of each other. Previous higher estimates for the age of M 1 granulite metamorphism in the SMC (Early Strangways event at ca. 1,770 Ma) based on U–Pb zircon dating of granitic, intrusive rocks, are not believed to relate to the metamorphism, but to represent pre-metamorphic intrusion ages. Conventional multi-grain U–Pb monazite analyses on high-grade metasediments from three widely spaced localities in the western SMC yield 207Pb/ 235U ages between 1,728±11 and 1,712±2 Ma. The age range of the monazites corresponds to the SHRIMP zircon ages in the granulitic veins and is interpreted to record monazite growth (prograde in the metasedimentary rocks). The data imply a maximum time-span of 30 Ma for high-grade metamorphism and deformation in the SMC. There is, thus, no evidence for an extremely long period of continuous high-temperature conditions from 1,770 to ca. 1,720 Ma as previously proposed. The results firmly establish that the SMC has a very different high-grade metamorphic history than the neighbouring Harts Range, where upper amphibolite facies metamorphism in the Palaeozoic caused widespread growth or recrystallization of monazite.  相似文献   

19.
Rb–Sr multimineral isochron data for metamorphic veins allow to date separate increments of the mineral reaction history of polymetamorphic terranes. Granulite facies rocks of the Lindås nappe, Bergen Arcs, Norway, were subducted and exhumed during the Caledonian orogeny. The rocks show petrographic evidence for two distinct events of local fluid infiltration and vein formation, along fractures and shear zones. The first occurred at eclogite facies (15–21 kbar, 650–750°C) and a later one at amphibolite facies conditions (8–10 kbar, 600°C). The presence of fluids enabled local metamorphic equilibration only near fluid pathways. In fluid-absent domains, preexisting assemblages were metastably preserved. This resulted in a heterogeneity of metamorphic signatures on meter to μm-scales. Well-preserved granulite facies rocks preserve their Proterozoic Rb–Sr mineral ages, as does the U–Pb system of zircon in most lithologies. Six Rb/Sr multimineral isochron ages for eclogite facies veins and their immediate wallrocks date the fluid-induced eclogitization at 429.9 ± 3.5 Ma (2σ, weighted average, MSWD = 0.39). An eclogite facies vein has yielded metamorphic zircon with concordant U–Pb ages of 429 ± 3 Ma, identical to the U–Pb age of 427.4 ± 0.9 Ma for zircon xenocrysts in an amphibolite facies vein. Seven Rb/Sr mineral isochron ages date amphibolite-facies fluid infiltration at 414.2 ± 2.8 Ma (MSWD = 1.5), an age value testifying to residence of the rocks in the deep orogenic crust at temperatures >600°C for nearly 15 Ma. The new data show that Rb–Sr mineral isochron ages effectively date fluid-induced (re)crystallization events rather than stages of cooling. The direct link between isotopic ages and distinct petrographic equilibrium assemblages aids to constrain the evolution of rocks in the P–T-reaction-time space, which is essential for understanding exhumation histories and the internal dynamics of orogens in general.  相似文献   

20.
The oxygen isotope compositions of eclogite and amphibolite garnets from Franciscan Complex high-grade blocks and actinolite rinds encasing the blocks were determined to place constraints on their fluid histories. SIMS oxygen isotope analysis of single garnets from five eclogite blocks from three localities (Ring Mountain, Mount Hamilton, and Jenner Beach) shows an abrupt decrease in the δ18O value by ~1–3 ‰ from core to rim at a distance of ~120 ± 50 μm from the rim in nine out of the 12 garnets analyzed. In contrast, amphibolite garnets from one block (Ring Mountain) analyzed show a gradual increase in δ18O value from core to rim, implying a different history from that of the eclogite blocks. Values of δ18O in eclogite garnet cores range from 5.7 to 11.6 ‰, preserving the composition of the eclogite protolith. The abrupt decrease in the δ18O values of the garnet rims to values ranging from 3.2 to 11.2 ‰ suggests interaction with a lower δ18O fluid during the final stages of growth during eclogite facies metamorphism (450–600 °C). We hypothesize that this fluid is sourced from the serpentinized mantle wedge. High Mg, Ni, and Cr contents of actinolite rinds encasing the blocks also support interaction with ultramafic rock. Oxygen isotope thermometry using chlorite and phengite versus actinolite of rinds suggests temperatures of 185–240 °C at Ring Mountain and Mount Hamilton. Rind formation temperatures together with the lower δ18O garnet rims suggest that the blocks were in contact with ultramafic rock from the end of garnet growth through low-temperature retrogression. We suggest a tectonic model in which oceanic crust is subducted at the initiation of subduction and becomes embedded in the overlying mantle wedge. As subduction continues, metasomatic exchange between high-grade blocks and surrounding ultramafic rock is recorded in low δ18O garnet rims, and later as temperatures decrease, with rind formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号