首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We have used a new variable temperature scanning tunnelling microscope (STM) to study quasi-1D and 2-D charge-density wave (CDW) systems. The 1-D systems, typified by NbSe3 and TaS3, are of special interest since they exhibit unusual transport phenomena associated with moving CDW above a threshold electric field. In the case of NbSe3, room temperature STM images show both major and subtle details of the lattice structure. At present, however, images taken below the Peierls transition temperature of TP=144 K resolve major lattice details but are not sufficiently clear to resolve the CDW. On the other hand, for the fully gapped CDW system orthorhombic-TaS3, the CDW modulation superimposed on the lattice structure and having the correct period of four times the S-S spacing of 3·3 Å, is observed below TP=215 K. Above TP, the main observable feature is the S-S spacing along the chains. STM measurements have also been performed on the 2-D CDW system 1T-TaS2 in its incommensurate, nearly commensurate, fully commensurate and trigonal phases. For the nearly commensurate phase, STM images show uniform commensurability with a relatively low concentration of small, time-varying discommensurations in contrast to models pradicting a regular domain structure. In the trigonal phase, however, evidence is seen for the striped phase composed of long, nearly parallel discommensurations.  相似文献   

2.
We have studied Cu(111) and Au(111) by means of scanning tunnelling microscopy and spectroscopy. The constant current topographies showed flat parts as well as regions with a high density of monoatomic steps (in particular on Au(111)). Local I/U characteristics have been determined at a fixed sample-tip distance in the range of ?10 V≤U≤10 V. They show a linear behaviour near the Fermi level and a nearly exponential dependency for larger values of U. Neither an influence of the sp-like surface states or an onset due to d electron contributions of the sample could be observed.  相似文献   

3.
Tobacco mosaic virus (TMV) has been deposited on freshly cleaved mica substrates. The topography was investigated by contact, non-contact and lateral-force microscopy under ambient conditions in air. The results were in accord with known dimensions of TMV (i.e. 18 nm in diameter and 300 nm in length). However, convolution of tip shape with TMV morphology resulted in an apparent width of 80–140 nm in the lateral plane, a factor of 4–7 greater than the known diameter. Other artefacts - broadening and double images - were observed and ascribed to tip anomalies. High force loadings and slow repetitive scanning resulted in controlled removal of parts of the TMV structure. Accordingly, it was possible to reveal and image the central core channel of the TMV. The precision and resolution of dissection induced by AFM is currently limited by the shape of the tip, having a 40-nm radius of curvature for standard Si3N4 tips. It is estimated that sharper tips, with a radius of curvature of less than 10 nm, should be able to resolve, non-destructively, the protein subunits in the non-contact mode, and selectively remove single subunits in the contact mode.  相似文献   

4.
Tip sample interaction forces were investigated during normal tunnelling operation of the STM using an Ir tip and a polycrystalline Ir sample. Metallic adhesion interaction was observed for tunnel conductivity ranging from 10?6 to 19?9 Ω-1 implying that the actual gap width was of the order of 1–4 Å. Similar experiments performed on a polycrystalline Al sample exposed to 1 Langmuir O2 showed that tip sample interaction changed from attractive to repulsive on well-defined areas extending over ~100 Å2 which we identified with the oxidized Al surface.  相似文献   

5.
Scanning probe microscopes derived from the scanning tunnelling microscope (STM) offer new ways to examine surfaces of biological samples and technologically important materials. The surfaces of conductive and semiconductive samples can readily be imaged with the STM. Unfortunately, most surfaces are not conductive. Three alternative approaches were used in our laboratory to image such surfaces. 1. Crystals of an amino acid were imaged with the atomic force microscope (AFM) to molecular resolution with a force of order 10?8 N. However, it appears that for most biological systems to be imaged, the atomic force microscope should be able to operate at forces at least one and perhaps several orders of magnitude smaller. The substitution of optical detection of the cantilever bending for the measurement by electron tunnelling improved the reliability of the instrument considerably. 2. Conductive replicas of non-conductive surfaces enabled the imaging of biological surfaces with an STM with a lateral resolution comparable to that of the transmission electron microscope. Unlike the transmission electron microscope, the STM also measures the heights of the features. 3. The scanning ion conductance microscope scans a micropipette with an opening diameter of 0·04-0·1 μm at constant ionic conductance over a surface covered with a conducting solution (e.g., the surface of plant leaves in saline solution).  相似文献   

6.
Scanning tunnelling microscopy is used to monitor etching of the basal plane of highly orientated pyrolytic graphite by ozone, oxygen and nitric acid. These treatments are seen to produce numerous single and multilayer step defects. Subsequent modification of the graphite sheet edges flanking these cavities by cyanuric chloride, TiCl4 and other reagents is shown to activate the edges, thereby making them capable of covalently binding various molecules.  相似文献   

7.
We have used a scanning probe microscope equipped with a custom made diamond tip to study tribological properties of an inorganic–organic hybrid Si, O, H, and C coating produced by plasma enhanced chemical vapor deposition (PECVD) on siloxane/acrylic/polycarbonate multilayer substrates and on glass substrates. The micro indentation hardness and micro mar resistance were measured under different normal forces, and the critical loads for cracking, delamination, and chipping were evaluated. The effects of substrate, coating thickness, and interfacial adhesion on tribological properties of the coating/substrate systems are discussed. The results show that increasing coating thickness and strengthening interfacial adhesion can effectively inhibit cracking, delamination, and chipping of the coating/substrate systems under wear. Improving the physical properties of the PECVD coating and substrate, such as enhancing elastic recovery, reducing plasticity and brittleness, and matching the properties of coating and substrate better can improve the wear resistance of the systems further.  相似文献   

8.
采用均相沉淀法制备了SiO2/CeO2复合磨料,并利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FT-IR)等对样品的相组成和形貌进行了表征。将所制备的SiO2/CeO2复合磨料用于蓝宝石晶片的化学机械抛光,利用原子力显微镜检测抛光后的蓝宝石晶片表面粗糙度。结果表明:所制备的SiO2/CeO2复合磨粒呈球形,粒径在40-50nm;在相同条件下,经过复合磨料抛光后的蓝宝石晶片表面粗糙度为0.32nm,材料去除速率为16.4nm/min,而SiO2抛光后的蓝宝石晶片表面粗糙度为0.92nm,材料去除速率为20.1nm/min。实验显示,复合磨料的材料去除速率略低于单一SiO2磨料,但它获得了较好的表面质量,基本满足蓝宝石作发光二极管(LED)衬底的工艺要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号