首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
镁合金微弧氧化陶瓷层的耐蚀性   总被引:42,自引:7,他引:42  
通过NaCl中性盐雾腐蚀试验定性地分析镁合金微弧氧化陶瓷层的耐蚀性,初步研究了陶瓷层表面微观结构对其耐蚀性的影响。结果表明:镁合金微弧氧化陶瓷层的微观组织结构的结合方式和生长方式直接影响其耐蚀性,微弧氧化试样的耐蚀性与陶瓷的厚度有关,陶瓷层厚度的增加并不一定能使其耐蚀性提高。  相似文献   

2.
能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响   总被引:17,自引:0,他引:17  
用自制的微弧氧化控制电源研究了在硅酸盐溶液体系中电流密度、频率、占空比等能量参数对镁合金微弧氧化陶瓷层的厚度及耐蚀性的影响,并优化了微弧氧化工艺.结果表明:随电流密度增加,陶瓷层厚度呈现线性增加,而耐蚀性表现出先增后减的趋势,在电流密度为3 A/dm2~4 A/dm2时,陶瓷层的耐蚀性最佳;恒流微弧氧化方式下频率与占空比对陶瓷层的厚度影响不大,但对其耐蚀性有一定影响,随频率增加,陶瓷层的耐蚀性越来越好,随占空比增大,陶瓷层的耐蚀性逐渐变差;工艺参数优化所制得陶瓷层的耐蚀性较参数恒定控制有一定的提高.  相似文献   

3.
目的 提高镁合金基体的耐蚀性能.方法 采用微弧氧化工艺对镁合金进行预处理,再通过自组装技术处理,在镁合金表面制备微弧氧化/十六烷基三甲氧基硅烷自组装复合膜层.通过SEM、EDS对复合膜的微观组织结构进行分析,并通过XPS、拉曼光谱分析了复合膜的表面成分,利用电化学阻抗谱、极化曲线、盐雾实验和浸泡实验检测了复合膜层的耐腐...  相似文献   

4.
采用微弧氧化和溶胶凝胶技术在镁合金表面制备复合涂层,该涂层过渡层为微弧氧化膜层,外层为SiO2溶胶凝胶层。通过傅里叶红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)等分析技术对复合涂层成分、组织结构以及微观形貌进行了表征,并采用电化学测试方法综合分析了该复合涂层的耐蚀性能。研究表明,该复合涂层与基体结合较好,具有良好的高温稳定性,在质量分数为3.5%的NaCl溶液中腐蚀电位明显正移,腐蚀电流密度显著降低,表现出良好的耐蚀性。  相似文献   

5.
镁合金微弧氧化陶瓷层的生长过程及其耐蚀性   总被引:13,自引:2,他引:13  
利用扫描电镜(SEM)和盐雾腐蚀试验等手段。研究了镁合金微弧氧化陶瓷层不同生长阶段的形貌特征及耐蚀性.结果表明:整个过程可分为三个阶段。即阳极沉积阶段、微弧阶段和局部弧光阶段.阳极沉积阶段是在阳极表面发生团絮氧化膜沉积与扩展的过程;微弧阶段是前期缺陷减少与消失并形成均匀膜层的过程,陶瓷层表面微孔孔径较小,膜层均匀致密;局部弧光阶段形成的放电微孔孔径较大,陶瓷层比较疏松.陶瓷层的耐蚀性则表现出先增后减的变化趋势.在微弧氧化处理8min~12min时,陶瓷层的耐蚀性最好.通过控制陶瓷层不同生长时期的能量分配,尽量延长陶瓷层的均匀生长过程。可以获得到均匀致密的陶瓷层.  相似文献   

6.
镁合金微弧氧化陶瓷层耐蚀性的研究   总被引:33,自引:4,他引:33  
利用盐雾腐蚀试验和SEM等分析手段,研究了镁合金微弧氧化陶瓷层的腐蚀过程及4各电解液体系对陶瓷层耐蚀性的影响,分析了镁合金微弧氧化陶瓷层与铬化处理膜层耐蚀性的差异和封孔处理的作用机理,结果表明,在复合系电解液中处理的镁合金样品耐蚀性最好,所有微弧氧化处理的样品其耐蚀性均远优于铬化处理样品,用石蜡孔可明显提高样品的耐蚀性。  相似文献   

7.
镁合金微弧氧化陶瓷层耐蚀性的电化学分析   总被引:8,自引:0,他引:8  
采用IM6e型电化学工作站,测试了镁合金微弧氧化后陶瓷层的电化学阻抗(EIS)、稳态电流/电位极化曲(Steady State1/E Recording)以及Tafel斜率。结合测量结果对微弧氧化处理镁合金的耐蚀性进行分析。结果表明,经过微弧氧化处理后试样的电化学阻抗比未经处理原始试样的电化学阻抗高3个数量级。微弧氧化处理过程中存在一个最佳陶瓷层厚度,当超过或低于这个最佳厚度时,试样的耐蚀性都较差,只有达到这个最佳厚度时,试样的耐蚀性才是最佳的。  相似文献   

8.
利用扫描电镜(SEM)和盐雾腐蚀试验等手段,研究了镁合金在不同电导率溶液中微弧氧化处理生成陶瓷层的生长规律及耐蚀性。结果表明:随溶液电导率的增大,发生微弧氧化现象的起弧电压减小,微弧氧化陶瓷层厚度表现出近似线性增长,陶瓷层表面微孔数目逐渐减少,微孔孔径逐渐增大,陶瓷层内显微缺陷数量逐渐增多;陶瓷层的耐蚀性随电导率的增大表现出先增后减的变化趋势,在溶液电导率为4 (?·m)-1~6 (?·m)-1 时,陶瓷层的耐蚀性较好。  相似文献   

9.
硅铝复合电解液体系中利用单脉冲工作模式在AZ9ID镁合金表面制备了一系列微弧氧化膜层.采用四因素三水平正交实验研究单脉冲工作模式下电流密度、正占空比、氧化时间和频率对膜层耐蚀性的影响.结果表明:各电参数对膜层耐蚀性的影响程度由高到低排列依次是氧化时间、正占空比、电流密度、频率;制备较优耐蚀性膜层的电参数为:电流密度22 A/dm2,正占空比40%,氧化时间12 min,频率500 Hz;在较优工艺方案下制得的试样与镁合金相比,其自腐蚀电位提高了36.4 mV,腐蚀电流密度下降了1个数量级.  相似文献   

10.
为了探索AM60压铸镁合金微弧氧化陶瓷层的耐蚀性,采用IM6e型电化学工作站,测量了不同表面状态下制备10μm、20μm及30μm三种厚度微弧氧化陶瓷层在3.5%NaCl溶液中的电化学极化曲线,并对其进行了Tafel斜率分析。结果表明:微弧氧化处理,可以使AM60压铸镁合金的腐蚀电流密度降低2~4个数量级;压铸镁合金在原始表面状态下进行微弧氧化,其腐蚀电流密度随着处理厚度的增加而降低,厚度为30μm试样的腐蚀电流密度较低;对压铸镁合金处理前进行打磨,可以进一步降低腐蚀电流密度,在微弧氧化陶瓷层厚度为20μm时获得最低的腐蚀电流密度。  相似文献   

11.
在微弧氧化电解液中引入了KOH添加剂,并在镁合金表面制备了陶瓷膜层,研究了KOH浓度对微弧氧化过程中的膜层生长及膜层耐腐蚀性能的影响。结果表明:在镁合金微弧氧化电解液中引入KOH添加剂可以有效降低微弧氧化过程的起弧电压和工作电压,但是KOH浓度过高会使起弧电压增大;KOH的引入会使膜层中的大尺寸孔隙数目减少,孔隙率提高。为了得到较高的膜层生长速率和较好的耐蚀性,电解液中的KOH剂量以1~3 g/L为宜。  相似文献   

12.
目的 研究原位蒸汽法制备层状双金属氢氧化物(LDH)的反应机理,以及添加Al(NO3)3对AZ91D镁合金表面水滑石蒸汽涂层耐蚀性的影响和耐蚀机理。方法 在蒸汽源中添加不同浓度的Al(NO3)3,以提供Al3+,采用原位蒸汽法在150 ℃下进行5 h水热反应,在AZ91D镁合金表面制备水滑石蒸汽涂层。使用XRD、FT-IR、SEM、EDS 等测试手段对水滑石蒸汽涂层进行表征,通过动电位极化、电化学阻抗和盐雾试验,研究水滑石蒸汽涂层的生长机理及腐蚀机理。结果 基于不同浓度梯度的Al(NO3)3,在AZ91D镁合金表面成功制备了水滑石蒸汽涂层,涂层的主要组成物相为Mg(OH)2、Mg-Al-NO3LDH、Mg-Al-CO32LDH。Al(NO3)3/LDH相较于未添加Al(NO3)3得到的LDH,其生长均匀、结构致密,耐腐蚀性能由大到小的顺序为LDH-100、LDH-200、LDH-50、LDH-20、LDH、AZ91D镁合金。水滑石蒸汽涂层的腐蚀产物主要为Mg(OH)2、MgCO3。结论 在添加100 mmol/L的Al(NO3)3作为蒸汽源时,充足的Al3+保证了合成结构致密水滑石的需要,副产物最少,且耐蚀性最好。最后,讨论了水滑石蒸汽涂层的生长机理和腐蚀机理。  相似文献   

13.
张菊梅  段鑫  王凯  张阳  蔡辉 《表面技术》2021,50(5):261-268, 280
目的 研究层状双金属氢氧化物(LDH)形成的水热反应机理,以及水热反应温度对LA103Z镁锂合金表面MAO/LDH复合膜层微观组织及耐蚀性的影响.方法 保持水热反应时间为18 h,改变水热反应温度,在微弧氧化陶瓷层(MAO)表面制备LDH膜层.将制得的Mg-Al LDH/MAO复合膜层置于3.5%NaCl溶液中,进行浸泡和析氢实验,使用XRD、SEM、EDS等测试手段对腐蚀前后的膜层进行表征.结果 不同水热反应温度下,均能在MAO陶瓷层表面形成细小针状结构,经XRD分析得到了LDH的特征衍射峰.在80、90、100℃条件下制备的LDH膜层,表面均匀,截面结构致密,而在120℃条件下制备的LDH膜层,表面针状组织尺寸更为粗大,分布更为密集,但截面蓬松.析氢实验中,在不同水热反应温度下,膜层析氢曲线的斜率由小到大依次为:80℃≈90℃<100℃<120℃相似文献   

14.
硅酸盐电解液体系中对AZ91D镁合金进行微弧氧化处理,膜层厚度相同但生长速率不同是本研究的实验设计特色。通过调节电源电压,使得膜层的生长速率分别为1μm/min、5μm/min、15μm/min和25μm/min,从而制备出生长速率不同但厚度相同的微弧氧化膜层,对膜层的微观结构及耐蚀性进行定性及定量研究,从实验室研究及实际应用角度对不同生长速率的各膜层进行综合对比分析。结果表明,生长速率对膜层的表面孔隙率、微孔的尺寸及数量,膜层的质量及质量厚度比,以及膜层耐蚀性均有较大的影响,但对膜层中的成分及元素分布基本无影响;在工业应用中,膜层生长速率的选择,应将膜层的生产效率和膜层性能统筹考量,本研究中生长速率为15μm/min的膜层显示出这样的优势。  相似文献   

15.
目的 探索电解液中KOH浓度对LA103Z镁锂合金微弧氧化成膜过程及膜层耐蚀性能的影响规律.方法 通过恒压微弧氧化法,在KOH质量浓度分别为2、4、6 g/L的硅酸盐系电解液中制备微弧氧化膜层.采用扫描电子显微镜(SEM)观察微弧氧化膜层的表面形貌和截面形貌,采用Image-J软件分析膜层的孔隙率和厚度,通过电化学试验...  相似文献   

16.
目的优化Mg-Al LDH/MAO涂层的制备工艺,提高铝合金的耐蚀性。方法将微弧氧化样置于不同pH溶液中,在不同反应时间和反应温度下,采用原位生长法在2024铝合金表面制备层间含NO3^–的MgAl-LDHs/MAO复合涂层。借用SEM、EDS、XRD研究LDH/MAO的微观组织结构,并利用电化学法表征MgAl-LDH/MAO复合涂层试样的腐蚀行为,揭示复合涂层的耐蚀机理以及最优异的工艺条件。结果pH值为6和7的溶液制备出的涂层,生成了少量的LDHs,多数集中在孔洞附近,且生长不完全。相比之下,pH值为9的溶液制备出的涂层生成的片状水滑石更多,且较均匀,腐蚀电流较低,腐蚀电位较高。反应时间为12 h时,生成的水滑石较少,只有部分孔洞处会看到一些;反应时间为24 h和48 h制得的合金形貌相差不大,水滑石皆明显多于12 h的样品,且更加均匀。反应温度为180℃和220℃的合金形成的LDHs较多、较均匀,且生长较好,呈现很明显的片状结构。结论弱碱的制备环境、反应温度的升高和反应时间的延长,促进了水滑石的生成,所得Mg-Al LDH/MAO复合涂层有效地改善了2024铝合金的耐蚀性。  相似文献   

17.
To further enhance the corrosion resistance of the porous micro-arc oxidation (MAO) ceramic layers on AZ31 magnesium alloy, superhydrophobic Mg−Al layered double hydroxide (LDH) coating was fabricated on MAO-coated AZ31 alloy by using in-situ growth method followed by surface modification with stearic acid. The characteristics of different coatings were investigated by XRD, SEM and EDS. The effect of the hydrothermal treatment time on the formation of the LDH coatings was studied. The results demonstrated that the micro-pores and cracks of MAO coating were gradually sealed via in-situ growing LDH with prolonging hydrothermal treating time. Electrochemical measurement displayed that the lowest corrosion current density, the most positive corrosion potential and the highest impedance modulus were observed for superhydrophobic LDH/MAO coating compared with those of MAO coating and LDH/MAO coating. Immersion experiment proved that the superhydrophobic LDH/MAO coating with the active anti-corrosion capability significantly enhanced the long-term corrosion protection for MAO coated alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号