首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Relative rate techniques were used to measure k(OH + HFE-7500) = (2.6+/-0.6) x 10(-14), k(Cl + HFE-7500) = (2.3+/-0.7) x 10(-12), k[Cl + n-C3F7CF(OC(O)H)CF(CF3)2] = (9.7+/-1.4) x 10(-15), and k[Cl + n-C3F7CF(OC(O)CH3)CF(CF3)2] < 6 x 10(-17) cm3 molecule(-1) s(-1) at 295 K [HFE-7500 = n-C3F7-CF(OC2H5)CF(CF3)2]. From the value of k(OH + HFE-7500) an estimate of 2.2 years for the atmospheric lifetime of HFE-7500 is obtained. Two competing loss mechanisms for n-C3F7-CF(OCHO.CH3)CF(CF3)2 radicals were identified in 700 Torr of N2/O2 diluent at 295 K; reaction with O2 and decomposition via C-C bond scission with kO2/k(decomp) = 0.013+/-0.006 Torr(-1). The Cl atom initiated oxidation of HFE-7500 in N2/O2 diluent gives n-C3F7CF(OC(O)CH3)CF(CF3)2 as the major product and n-C3F7CF(OC(O)H)CF(CF3)2 as a minor product. The atmospheric oxidation of HFE-7500 gives n-C3F7-CF(OC(O)CH3)CF(CF3)2 and n-C3F7CF(OC(O)H)CF(CF3)2 as oxidation products. The results are discussed with respect to the atmospheric chemistry and environmental impact of HFE-7500.  相似文献   

2.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with a series of fluorotelomer alcohols, F(CF2CF2)nCH2CH2OH (n = 2, 3, 4), in 700 Torr of N2 or air, diluent at 296 +/- 2K. The length of the F(CF2CF2)n- group had no discernible impact on the reactivity of the molecule. For n = 2, 3, or 4, k(Cl + F(CF2CF2)nCH2CH2OH) = (1.61 +/- 0.49) x 10(-11) and k(OH + F(CF2CF2)nCH2CH2OH) = (1.07 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). Consideration of the likely rates of other possible atmospheric loss mechanisms leads to the conclusion that the atmospheric lifetime of F(CF2CF2)nCH2CH2OH (n > or = 2) is determined by reaction with OH radicals and is approximately 20 d.  相似文献   

3.
Chlorine atom-initiated photooxidations of three homologous methyl perfluoroalkyl ethers (HFEs), n-C(n)F(2n+1)OCH3 (n = 2, 3, and 5), in air in the absence of NOx were investigated with a long path FTIR/photochemical reaction system to elucidate the degradation mechanisms. The environmental removal processes of these three ethers in the troposphere were estimated. For oxidation of the three ethers, perfluoroalkyl formates (C(n)F(2n+1)OCHO; n = 2, 3 and 5) as relatively stable intermediates were produced at unity of the production ratio, which was independent of the perfluoroalkyl length. The rate constants for the reaction of Cl atoms with C2F5OCHO, C3F7OCHO, and C5F11OCHO were (1.2 +/- 0.5) x 10(-14), (1.2 +/- 0.5) x 10(-14), and (1.8 +/- 0.7) x 10(-14) cm3 molecule(-1) s(-1), respectively. The rate constants of the reaction of Cl with produced perfluoroalkyl formates were larger than these of perfluoroalkyl ethers. The formyl group of the perfluoroalkyl formates was finally converted to carbon dioxide. The -CF2- of the perfluoroalkyl groups for the three ethers was mainly converted to COF2 through the C-C cleavage; the conversion ratios from the carbons of the perfluoroalkyl group to COF2 were 48 +/- 10, 76 +/- 10, and 60 +/- 10% for C2F5OCH3, n-C3F7OCH3, and n-C5F11OCH3, respectively. Sixteen percent of the perfluoroalkyl group for n-C3F7OCH3 was converted to C2F5COF. Similarly, the perfluoroalkyl group of n-C5F11OCH3 was converted to C(n)F(2n+1)COF (n = 2, 3, and/or 4) with the yield of 15-30%, while for C2F5OCH3, the formation of CF3COF was not confirmed. As an oxidation product of the terminal CF3- group, 20, 22, and 16% of the CF3 group for C2F5OCH3, n-C3F7OCH3, and n-C5F11OCH3, respectively, were converted to CF3OOOCF3.  相似文献   

4.
Smog chamber/FTIR techniques were used to study the atmospheric chemistry of the title compound which we refer to as RfOC2H5. Rate constants of k(Cl + RfOC2H5) = (2.70 +/- 0.36) x 10(-12), k(OH + RfOC2H5) = (5.93 +/- 0.85) x 10(-14), and k(Cl + RfOCHO) = (1.34 +/- 0.20) x 10(-14) cm3 molecule(-1') s(-1) were measured in 700 Torr of N2, or air, diluent at 294 +/- 1 K. From the value of k(OH + RfOC2H5) the atmospheric lifetime of RfOC2H5 was estimated to be 1 year. Two competing loss mechanisms for RfOCH(O*)CH3 radicals were identified in 700 Torr of N2/O2 diluent at 294 +/- 1 K; decomposition via C-C bond scission giving a formate (RfOCHO), or reaction with 02 giving an acetate (RfOC(O)CH3). In 700 Torr of N2/O2 diluent at 294 +/- 1 K the rate constant ratio k(O2)/k(diss) = (1.26 +/- 0.74) x 10(-19) cm3 molecule(-1). The OH radical initiated atmospheric oxidation of RfOC2H5 gives Rf0CHO and RfOC(O)CH3 as major products. RfOC2H5 has a global warming potential of approximately 55 for a 100 year horizon. The results are discussed with respect to the atmospheric chemistry and environmental impact of RfOC2H5.  相似文献   

5.
Kinetic rate coefficients for the reactions of HFE-7100 (1) (C4F9OCH3) and HFE-7200 (2) (C4F9OC2H5) with Cl atoms have been measured using a discharge flow mass spectrometric technique (DFMS) at 1 Torr total pressure. The reactions have been studied under pseudo-first-order kinetic conditions in excess of HFEs over Cl atoms and the study has been extended from 333 down to 234 K to approach the tropospheric temperature profile. At room temperature the measured rate constants are k (1) = (1.43 +/- 0.28) x 10(-13) cm3molecule(-1)s(-1) and k (2) = (2.1 +/- 0.1) x 10(-12) cm3molecule(-1)s(-1). The Arrhenius expressions from our results are (units in cm3molecule(-1)s(-1)): k (1) = (2.3 +/- 1.4) x 10(-10) exp - (2254 +/- 177)/T(234-315 K) and k (2) = (3.7 +/- 0.5) x 10(-11) exp - (852 +/- 38)/T(234-333 K) (errors are sigma). The reactions proceed through the abstraction of an H atom to form HCl and the corresponding halo-alkyl radical. At 298 K and 1 Torr, yields on HCl of 0.88 +/- 0.09 and 0.95 +/- 0.10 (errors are 2sigma) were obtained for HFE-7100 and HFE-7200 reactions, respectively.  相似文献   

6.
The gas-phase kinetic coefficients of OH radicals with two primary fluorinated alcohols, CF(3)CH(2)CH(2)OH (k(1)) and CF(3)(CH(2))(2)CH(2)OH (k(2)), potential replacements of hydrofluorocarbons (HFCs), are reported here as a function of temperature (T = 263-358 K) for the first time. k(1) and k(2) (together referred as k(i)) were measured under pseudo-first-order conditions with respect to the initial OH concentration using the pulsed laser photolysis/laser induced fluorescence technique. The observed temperature dependence of k(i) (in cm(3) molecule(-1) s(-1)) is described by the following Arrhenius expressions: k(1)(T) = (2.82 ± 1.28) × 10(-12) exp{-(302 ± 139)/T} cm(3) molecule(-1) s(-1) and k(2)(T) = (1.20 ± 0.73) × 10(-11) exp{-(425 ± 188)/T} cm(3) molecule(-1) s(-1).The uncertainties in the Arrhenius parameters are at a 95% confidence level (± 2σ). Uncertainties in k(i)(T) include both statistical and systematic errors. Activation energies were (2.5 ± 1.2) kJ/mol and (3.6 ± 1.6) kJ/mol for the OH-reaction with CF(3)CH(2)CH(2)OH and CF(3)(CH(2))(2)CH(2)OH, respectively. The global lifetime (τ) at 275 K for CF(3)CH(2)CH(2)OH and CF(3)(CH(2))(2)CH(2)OH due to the OH-reaction was estimated to be ca. 2 weeks and 5 days, respectively. The reported Arrhenius parameters can be used in 3D models that take into account the geographical region and season of emissions for estimating a matrix of instantaneous lifetimes. As a consequence of the substitution of the -CH(3) group by a -CH(2)OH group in HFCs, such as CF(3)CH(2)CH(3) and CF(3)(CH(2))(2)CH(3), the tropospheric lifetime with respect to the OH reaction is significantly shorter and, since their radiative forcing is similar, global warming potentials of CF(3)CH(2)CH(2)OH and CF(3)(CH(2))(2)CH(2)OH are negligible. Therefore, CF(3)CH(2)CH(2)OH and CF(3)(CH(2))(2)CH(2)OH seem to be suitable alternatives to HFCs.  相似文献   

7.
Relative rate methods were used to measure the gas-phase reaction of N-methyl perfluorobutane sulfonamidoethanol (NMeFBSE) with OH radicals, giving k(OH + NMeFBSE) = (5.8 +/- 0.8) x 10(-12) cm3 molecule(-1) s(-1) in 750 Torr of air diluent at 296 K. The atmospheric lifetime of NMeFBSE is determined by reaction with OH radicals and is approximately 2 days. Degradation products were identified by in situ FTIR spectroscopy and offline GC-MS and LC-MS/MS analysis. The primary carbonyl product C4F9SO2N(CH3)CH2CHO, N-methyl perfluorobutane sulfonamide (C4F9SO2NH(CH3)), perfluorobutanoic acid (C3F7C(O)OH), perfluoropropanoic acid (C2F5C(O)OH), trifluoroacetic acid (CF3C(O)OH), carbonyl fluoride (COF2), and perfluorobutane sulfonic acid (C4F9SO3H) were identified as products. A mechanism involving the addition of OH to the sulfone double bond was proposed to explain the production of perfluorobutane sulfonic acid and perfluorinated carboxylic acids in yields of 1 and 10%, respectively. The gas-phase N-dealkylation product, N-methyl perfluorobutane sulfonamide (NMeFBSA), has an atmospheric lifetime (>20 days) which is much longer than that of the parent compound, NMeFBSE. Accordingly,the production of NMeFBSA exposes a mechanism by which NMeFBSE may contribute to the burden of perfluorinated contamination in remote locations despite its relatively short atmospheric lifetime. Using the atmospheric fate of NMeFBSE as a guide, it appears that anthropogenic production of N-methyl perfluorooctane sulfonamidoethanol (NMeFOSE) contributes to the ubiquity of perfluoroalkyl sulfonate and carboxylate compounds in the environment.  相似文献   

8.
The reactions of Cl atoms and ClO radicals with CH3-SOCH3 (DMSO) have been studied using the discharge flow method with direct detection of DMSO, CO, and products by mass spectrometry. The absolute rate constant at room temperature measured for reaction 1, (CH3)2SO + Cl --> products, was k(1) = (1.7 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1). For reaction 2, (CH3)2SO + ClO --> products, only an upper limit could be established, k(2) < or = 6 x 10(-14) cm3 molecule(-1) s(-1) Reaction 1 has been found to proceed through adduct formation and further decomposition involving the cleavage of the C-S bound. The pressure effect on the Cl-DMSO reaction from 0.5 to 3 Torr was negligible, and the temperature dependence in the range 273-335 K was also very slight. The results obtained are related to previous studies of sulfur compounds, and the atmospheric implications are also discussed in relation to the homogeneous sinks of DMSO. Tropospheric lifetimes of DMSO based on average Cl and ClO concentrations and the measured rate constants have been calculated showing that the contribution of reaction 1 must be of minor relevance in the marine boundary layer. Reaction 2 is so slow that it does not play any role within the atmospheric sulfur chemistry.  相似文献   

9.
The OH-initiated oxidation of two VOCs directly emitted to the atmosphere through their use as industrial solvents, hexylene glycol (HG, (CH3)2C(OH)CH2CH(OH)CH3) and diacetone alcohol (DA, (CH3)2C(OH)CH2C(O)CH3), has been studied in two photoreactors: a 140 L Teflon bag irradiated by lamps at CNRS-Orleans and the 200 m3 European photoreactor, EUPHORE, irradiated by sunlight. The rate constants for the reactions of HG and DA with OH radicals have been determined at (298 +/- 3) K using a relative rate method: k(HG) = (1.5 +/- 0.4) x 10(-11) and k(DA) = (3.6 +/- 0.6) x 10(-12) cm(3) molecule(-1) s(-1) and have been found in good agreement with estimations from structure-reactivity relationships. The study at Orleans and EUPHORE of the OH-initiated oxidation of hexylene glycol showed the formation of diacetone alcohol, acetone, and PAN as the principal products. The branching ratio of the H-atom abstraction from the > CH- group of HG has been estimated to be (47 +/- 4)% corresponding to the measured formation yield of DA. The formation yields of acetone and PAN lead to the determination of a lower limit of (33 +/- 7)% for the branching ratio of the H-atom abstraction of the -CH2- group of HG. For diacetone alcohol, studies at EUPHORE have shown negligible photolysis under atmospheric conditions (J < 5 x 10(-6) s(-1)) and the formation of acetone, PAN, HCHO, and CO in the OH-initiated oxidation experiments. The molar yield of acetone, close to 100%, corresponds to the branching ratio of the H-atom abstraction from the -CH2- group of DA. The present study has allowed the identification of the nature and the fate of the oxy radicals as intermediates in the oxidation mechanism of both HG and DA. The atmospheric implication of these results, especially the ozone formation potential of HG and DA, is discussed.  相似文献   

10.
The absolute rate coefficients for the tropospheric reactions of hydroxyl radical (OH) with a series of linear aliphatic ketones (2-butanone (k1), 2-pentanone (k2), 2-hexanone (k3), and 2-heptanone (k4)) were measured as a function of temperature (228-405 K) and pressure (45-600 Torr of He) by the pulsed laser photolysis/laser induced fluorescence technique. These studies are essential to model the atmospheric chemistry of these ketones and their impact in the air quality. No pressure dependence of the rate coefficients was observed in the range studied. Thus, k1(298 K) (x10(-12) cm3 molecule(-1) s(-1)) were averaged over the pressure range studied yielding the following: (1.04+/-0.74), (3.14+/-0.40), (6.37+/-1.40), and (8.22+/-1.10), for 2-butanone (k1), 2-pentanone (k2), 2-hexanone (k3), and 2-heptanone (k4), respectively. k1 exhibits a slightly positive temperature dependence over the temperature range studied. A conventional Arrhenius expression describes the observed behavior. In contrast, the temperature dependence of k2-k4 shows a distinct deviation from the Arrhenius behavior. The best fit to our data was found to be described by the three-parameter expression: k(T) = A + B exp(-C/T) in cm3 molecule(-1) s(-1). This work constitutes the first determination of the temperature dependence of k2-k4. Our results are compared with previous studies, when possible, and are discussed in terms of the H-abstraction by OH radicals. The atmospheric implications of these reactions are also discussed.  相似文献   

11.
FTIR spectroscopy was used to identify CH3ONO and CH3ONO2 as products of the nonthermal plasma treatment of simulated diesel exhaust. This is the first observation of CH3ONO formation in such systems. The yield of CH3ONO relativeto CH3ONO2 scaled linearly with the average [NO]/ [NO2] ratio in the system. A plot of [CH3ONO]/[CH3ONO2] versus [NO]/[NO2] gives a slope of 1.81 +/- 0.30. This result is indistinguishable from the literature value of the rate constant ratio k(CH3O + NO)/k(CH3O + NO2) = (2.6 x 10(-11))/ (1.5 x 10(-11)) = 1.73 +/- 0.37. The experimental observations suggest that reactions of CH3O radicals with NO and NO2 are the sources of CH3ONO and CH3ONO2 in such systems. The linear relationship between the yields of CH3ONO and CH3ONO2 provides a means of estimating the yield of these compounds during nonthermal plasma treatment of diesel exhaust.  相似文献   

12.
The heterogeneous decomposition of CHF2OCH2C2F5, a potential substitute for hydrofluorocarbons, over aluminosilica clay minerals in air, was confirmed to occur at 313 K in a closed-circulation reactor. HC(O)OCH2C2F5, the gaseous main product was produced through hydrolytic elimination of F atoms from the CHF2OCH2- group. CHF2OCH2CF3 also decomposed to HC(O)OCH2CF3 over the clay minerals. The pseudo-first-order rate constants were determined for the decompositions over eight types of clay minerals (19 samples). The various clay minerals had different abilities to decompose these hydrofluoroethers. The decomposition rates per Brunauer-Emmett-Teller surface area and the conversion ratios to HC(O)OCH2C2F5 or HC(O)OCH2CF3 for the reactions over kaolinite, halloysite, and illite were high in comparison to those for the same reactions over montmorillonite, hectorite, and nontronite. The dependence of this heterogeneous reaction on temperature and relative humidity indicates that, in the environment, the reaction could be important only in hot, dry regions. The results did not suggest that sunlight would directly accelerate the decay of CHF2OCH2CF3 or CHF2OCH2C2F5. In the presence of clay-containing soils in arid areas, this hydrolytic oxidation reaction may significantly affect both the lifetime and the degradation products of CHF2OCH2CF3 and CHF2OCH2C2F5 in the troposphere.  相似文献   

13.
Perfluorooctanesulfonamides [C8F17SO2N(R1)(R2)] are present in the atmosphere and may, via atmospheric transport and oxidation, contribute to perfluorocarboxylates (PFCA) and perfluorooctanesulfonate (PFOS) pollution in remote locations. Smog chamber experiments with the perfluorobutanesulfonyl analogue N-ethyl perfluorobutanesulfonamide [NEtFBSA; C4F9SO2N(H)CH2CH3] were performed to assess this possibility. By use of relative rate methods, rate constants for reactions of NEtFBSA with chlorine atoms (296 K) and OH radicals (301 K) were determined to be kCL) = (8.37 +/- 1.44) x 10(-12) and kOH = (3.74 +/- 0.77) x 10(-13) cm3 molecule(-1) s(-1), indicating OH reactions will be dominant in the troposphere. Simple modeling exercises suggestthat reaction with OH radicals will dominate removal of perfluoroalkanesulfonamides from the gas phase (wet and dry deposition will not be important) and that the atmospheric lifetime of NEtFBSA in the gas phase will be 20-50 days, thus allowing substantial long-range atmospheric transport. Liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis showed that the primary products of chlorine atom initiated oxidation were the ketone C4F9SO2N(H)COCH3; aldehyde 1, C4F9SO2N(H)CH2CHO; and a product identified as C4F9SO2N(C2H5O)- by high-resolution MS but whose structure remains tentative. Another reaction product, aldehyde 2, C4F9SO2N(H)CHO, was also observed and was presumed to be a secondary oxidation product of aldehyde 1. Perfluorobutanesulfonate was not detected above the level of the blank in any sample; however, three perfluoroalkanecarboxylates (C3F7CO2-, C2F5CO2-, and CF3CO2-) were detected in all samples. Taken together, results suggest a plausible route by which perfluorooctanesulfonamides may serve as atmospheric sources of PFCAs, including perfluorooctanoic acid.  相似文献   

14.
1,3-Butadiene and isoprene (2-methyl-1,3-butadiene) are emitted into the atmosphere in vehicle exhaust and, in the case of isoprene, from vegetation. We have investigated the formation and further reaction of products of their hydroxyl radical-initiated reactions using atmospheric pressure ionization mass spectrometry (API-MS) and solid-phase microextraction fibers precoated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine for on-fiber derivatization of carbonyl compounds, with subsequent analysis by thermal desorption and gas chromatography with flame ionization detection (SPME/GC-FID) or MS detection. Products attributed as HOCH2CH=CHCHO and HOCH2CH=CHCH2ONO2 (and isomers) from 1,3-butadiene; HOCD2CD=CDCDO and HOCD2CD=CDCD2ONO2 (and isomers) from 1,3-butadiene-d6; HOCH2C(CH3)=CHCHO and/or HOCH2CH=C(CH3)CHO, and HOCH2C(CH3)=CHCH2ONO2 (and isomers) from isoprene; and HOCD2C(CD3)=CDCDO and/or HOCD2CD=C(CD3)CDO, and HOCD2C(CD3)=CDCD2ONO2 (and isomers) from isoprene-d8 were observed as their NO2- adducts in the API-MS analyses. The hydroxycarbonyls were observed from SPME/GC-FID analyses of the 1,3-butadiene and isoprene reactions as their oximes, together with acrolein, glycolaldehyde, and glyoxal from the 1,3-butadiene reaction. A rate constant for the reaction of OH radicals with 4-hydroxy-2-butenal of (5.7 +/- 1.4) x 10(-11) cm3 molecule(-1) s(-1) at 298 +/- 2 K was derived, and formation yields of acrolein and 4-hydroxy-2-butenal from the 1,3-butadiene reaction of 58 +/- 10% and 25 (+15/-10)%, respectively, were determined. Analogous experiments showed that the two C5-hydroxycarbonyls formed from isoprene have rate constants for their reactions with OH radicals of (1.0 +/- 0.3) x 10(-10) cm3 molecule(-1) s(-1) and (4 +/- 2) x 10(-11) cm3 molecule(-1) s(-1) and a combined yield of approximately 15%, although isomer-specific identification of the hydroxycarbonyls was not achieved.  相似文献   

15.
Chemical kinetics were determined for the reactions of ozone and hydroxyl radicals with the three cyanotoxins microcystin-LR (MC-LR), cylindrospermopsin (CYN) and anatoxin-a (ANTX). The second-order rate constants (k(O3)) at pH 8 were 4.1 +/- 0.1 x 10(5) M(-1) s(-1) for MC-LR, approximately 3.4 x 10(5) M(-1) s(-1) for CYN, and approximately 6.4 x 10(4) M(-1) s(-1) for ANTX. The reaction of ozone with MC-LR exhibits a k(O3) similar to that of the conjugated diene in sorbic acid (9.6 +/- 0.3 x 10(5) M(-1) s(-1)) at pH 8. The pH dependence and value of k(O3) for CYN at pH > 8 (approximately 2.5 +/- 0.1 x 10(6) M(-1) s(-1)) are similar to deprotonated amines of 6-methyluracil. The k(O3) of ANTX at pH > 9 (approximately 8.7 +/- 2.2 x 10(5) M(-1) s(-1)) agrees with that of neutral diethylamine, and the value at pH < 8 (2.8 +/- 0.2 x 10(4) M(-1) s(-1)) corresponds to an olefin. Second-order rate constants for reaction with OH radicals (*OH), k(OH) for cyanotoxins were measured at pH 7 to be 1.1 +/- 0.01 x 10(10) M(-1) s(-1) for MC-LR, 5.5 +/- 0.01 x 10(9) M(-1) s(-1) for CYN, and 3.0 +/- 0.02 x 10(9) M(-1) s(-1) for ANTX. Natural waters from Switzerland and Finland were examined for the influence of variations of dissolved organic matter, SUVA254, and alkalinity on cyanotoxin oxidation. For a Swiss water (1.6 mg/L DOC), 0.2, 0.4, and 0.8 mg/L ozone doses were required for 95% oxidation of MC-LR, CYN, and ANTX, respectively. For the Finnish water (13.1 mg/L DOC), >2 mg/L ozone dose was required for each toxin. The contribution of hydroxyl radicals to toxin oxidation during ozonation of natural water was greatest for ANTX > CYN > MC-LR. Overall, the order of reactivity of cyanotoxins during ozonation of natural waters corresponds to the relative magnitudes of the second-order rate constants for their reaction with ozone and *OH. Ozone primarily attacks the structural moieties responsible for the toxic effects of MC-LR, CYN, and ANTX, suggesting that ozone selectively detoxifies these cyanotoxins.  相似文献   

16.
A bimolecular rate constant, kOH+alpha-terpineol, of (1.9 +/- 0.5) x 10(-10) cm3 molecule(-1) s(-1) was measured using gas chromatography/mass spectrometry and the relative rate technique for the reaction of the hydroxyl radical (OH) with alpha-terpineol (1-methyl-4-isopropyl-1-cyclohexen-8-ol) at (297 +/- 3) K and 1 atm total pressure. Additionally, a bimolecular rate constant, kO3+alpha-terpineol, of (3.0 +/- 0.2) x 10(-16) cm3 molecule(-1) s(-1) was measured by monitoring the first order decrease in ozone concentration as a function of excess alpha-terpineol. To better understand alpha-terpineol's gas-phase transformation in the indoor environment, the products of the alpha-terpineol + OH and alpha-terpineol + 03 reactions were also investigated. The positively identified alpha-terpineol/OH reaction products were acetone, ethanedial (glyoxal, HC(=O)C(=O)H), and 2-oxopropanal (methyl glyoxal, CH3C(=O)C(=O)H). The positively identified alpha-terpineol/O3 reaction product was 2-oxopropanal (methyl glyoxal, CH3C(=O)C(=O)H). The use of derivatizing agents O-(2,3,4,5,6-pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible alpha-terpineol/OH and alpha-terpineol/O3 reaction mechanisms based on previously published volatile organic compound/ OH and volatile organic compound/O3 gas-phase reaction mechanisms.  相似文献   

17.
The rate coefficientforthe reaction of OH with pinonaldehyde (C10H16O2, 3-acetyl-2,2-dimethyl-cyclobutyl-ethanal), a product of the atmospheric oxidation of alpha-pinene, was measured under pseudo-first-order conditions in OH at temperatures between 297 and 374 K at 55 and 96 Torr (He). Laser induced fluorescence (LIF) was used to monitor OH in the presence of pinonaldehyde following its production by 248 nm pulsed laser photolysis of H2O2. The reaction exhibits a negative temperature dependence with an Arrhenius expression of k1(T) = (4.5 +/- 1.3) x 10(-12) exp((600 +/- 100)/ 7) cm3 molecule(-1) s(-1); k1(297 K) = (3.46 +/- 0.4) x 10(-11) cm3 molecule(-1) s(-1). There was no observed dependence of the rate coefficient on pressure. Our results are compared with previous relative rate determinations of k1 near 297 K and the discrepancies are discussed. The state of knowledge for the atmospheric processing of pinonaldehyde is reviewed, and its role as a marker for alpha-pinene (monoterpene) chemistry in the atmosphere is discussed.  相似文献   

18.
Acetates are emitted into the atmosphere by several anthropic and natural sources. To better evaluate the environmental impact of these compounds, OH-induced oxidation kinetic and mechanism of allyl acetate (CH3C(O)OCH2-CH=CH2) have been investigated at room temperature and atmospheric pressure using three environmental chambers: an indoor Teflon-film bag (LISA, Créteil), an indoor Pyrex photoreactor (LISA, Créteil), and the outdoor Smog chamber EUPHORE (Valencia). Rate constant of the reaction of allyl acetate with OH radicals was determined by relative rate technique in the indoor Teflon-film bag. It is (30.6 +/- 3.1) x 10(-12) cm3 molecule-1 s-1. Mechanistic experiments were performed in the indoor photoreactor and in the outdoor Smog chamber EUPHORE. The main oxidation products observed by FTIR in both chambers were acetoxyacetaldehyde and formaldehyde. From these data, a mechanism was developed to describe the OH-induced oxidation of this acetate in the presence of NOx. Finally, atmospheric impact of allyl acetate emissions was evaluated using kinetic and mechanistic results.  相似文献   

19.
The OH-initiated oxidation of dichlorvos (a widely used insecticide) has been investigated under atmospheric conditions at the large outdoor European photoreactor (EUPHORE) in Valencia, Spain. The rate constant of OH reaction with dichlorvos, k, was measured by using a conventional relative rate technique where 1,3,5-trimethylbenzene (TMB) and cyclohexane were taken as references. With the use of the rate constants of 5.67 x 10(-11) and of 6.97 x 10(-12) cm3 molecule(-1) s(-1) for the reactions OH + TMB and OH + cyclohexane, respectively, the resulting value of the OH reaction rate constant with dichlorvos was derived to be k = (2.6 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1). The tropospheric lifetime of dichlorvos with respect to reaction with OH radical has been estimated to be around 11 h. The major carbon-containing products observed for the OH reaction with dichlorvos in air under sunlight condition were phosgene and carbon monoxide. The formation of a very stable toxic primary product such as phosgene associated with the relatively short lifetime of dichlorvos may make the use of this pesticide even more toxic for humans when released into the atmosphere.  相似文献   

20.
Iron(VI) and iron(V) oxidation of thiocyanate   总被引:1,自引:0,他引:1  
Thiocyanate (SCN-) is used in many industrial processes and is commonly found in industrial and mining waste-waters. The removal of SCN- is required because of its toxic effects. The oxidation of thiocyanate (SCN-) by environmentally friendly oxidants, Fe(VI) and Fe(V), has been studied anaerobically using stopped-flow and premix pulse radiolysis techniques. The stoichiometry with Fe(VI) was determined to be 4HFeO(4-) + SCN(-) + 5H2O-->4Fe(OH)3 + SO4(2-) + CNO(-) + O2 + 2OH-. The rate law for the oxidation of SCN- by Fe(VI) was found to be -d[Fe(VI)]/dt = k11([H+]/([H+] + Ka,HFeO4)) [Fe(VI)][SCN-] where k11 = 2.04 +/- 0.04 x 10(3) M-1 s-1 and pKa,HFeO4 = 7.33. A mechanism is proposed that agrees with the observed reaction stoichiometry and rate law. The rate of oxidation of SCN- by Fe(V) was approximately 3 orders of magnitude faster than Fe(VI). The higher reactivity of Fe(V) with SCN- indicates that oxidations by Fe(VI) may be enhanced in the presence of appropriate one-electron-reducing agents. The results suggest that the effective removal of SCN- can be achieved by Fe(VI) and Fe(V).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号