首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonance Raman and resonance hyper-Raman spectra and excitation profiles have been measured for a "push-pull" donor-acceptor substituted conjugated polyene bearing a julolidine donor group and a nitrophenyl acceptor group, in acetone at excitation wavelengths from 485 to 356 nm (two-photon wavelengths for the nonlinear spectra). These wavelengths span the strong visible to near-UV linear absorption spectrum, which appears to involve at least three different electronic transitions. The relative intensities of different vibrational bands vary considerably across the excitation spectrum, with the hyper-Raman spectra showing greater variation than the linear Raman. A previously derived theory of resonance hyper-Raman intensities is modified to include contributions from purely vibrational levels of the ground electronic state as intermediate states in the two-photon absorption process. These contributions are found to have only a slight effect on the hyper-Rayleigh intensities and profiles, but they significantly influence some of the hyper-Raman profiles. The absorption spectrum and the Raman, hyper-Rayleigh, and hyper-Raman excitation profiles are quantitatively simulated under the assumption that three excited electronic states contribute to the one- and two-photon absorption in this region. The transition centered near 400 nm is largely localized on the nitrophenyl group, while the transitions near 475 and 355 nm are more delocalized.  相似文献   

2.
Hyper-Raman spectra were obtained for zinc phthalocyanine in a dilute pyridine solution at excitation wavelengths that are two-photon resonant with the one-photon-allowed B band (360-380 nm) as well as with the two-photon absorption near 440 nm reported by Drobizhev et al. ( J. Chem. Phys. 2006, 124, 224701 ). In both regions, the hyper-Raman spectra were very different from the linear resonance Raman spectra at the corresponding excitation frequencies. While the resonance Raman spectra show only g symmetry modes, almost all of the hyper-Raman frequencies can be assigned as fundamentals of E u symmetry that also are observed in the infrared absorption spectrum or E u symmetry combination bands. These results contrast sharply with previous observations of highly noncentrosymmetric push-pull conjugated molecules and are consistent with a structure for phthalocyanine in solution that is centrosymmetric or nearly so. The hyper-Raman spectra show different intensity patterns in the two excitation regions, consistent with different Franck-Condon and/or vibronic coupling matrix elements for the different resonant states.  相似文献   

3.
Resonance Raman and resonance hyper-Raman spectra of the "push-pull" conjugated molecule 1-(4'-dihexylaminostyryl)-4-(4"-nitrostyryl)benzene in acetone have been measured at excitation wavelengths from 485 to 356 nm (two-photon wavelengths for the nonlinear spectra), resonant with the first two bands in the linear absorption spectrum. The theory of resonance hyper-Raman scattering intensities is developed and simplified using assumptions appropriate for intramolecular charge-transfer transitions of large molecules in solution. The absorption spectrum and the Raman, hyper-Rayleigh, and hyper-Raman excitation profiles, all in absolute intensity units, are quantitatively simulated to probe the structures and the one- and two-photon transition strengths of the two lowest-energy allowed electronic transitions. All four spectroscopic observables are reasonably well reproduced with a single set of excited-state parameters. The two lowest-energy, one-photon allowed electronic transitions have fairly comparable one-photon and two-photon transition strengths, but the higher-energy transition is largely localized on the nitrophenyl group while the lower-energy transition is more delocalized.  相似文献   

4.
宋建  庄巍 《化学进展》2012,24(6):1065-1081
多肽对红外激光脉冲的非线性响应中包含了丰富的结构动力学信息。本文以肽链的酰胺振动跃迁为例,提出了模拟二维红外相干光谱的理论方案。文中首先介绍了激子模型下非线性响应的微扰图像,并基于激子模型、经典分子动力学模拟和密度泛函静电势,构建酰胺振动模式有效波动哈密顿量。采用随机刘维尔方程(SLE)、数值演化(NP)、高斯波动的累积展开等方法计算非线性响应光谱。文章最后对多肽及多肽复合物等体系的二维红外信号进行模拟和讨论。  相似文献   

5.
Two-photon-resonant hyper-Raman spectra are reported for three "push-pull" conjugated organic chromophores bearing -NO(2) acceptor groups, two dipolar and one octupolar. The excitation source is an unamplified picosecond mode-locked Ti:sapphire laser tunable from 720 to 950 nm. The linear resonance Raman spectra of the same molecules are measured using excitation from the laser second harmonic. Excitation on resonance with the lowest-lying band in the linear absorption spectrum yields nearly identical resonance Raman and resonance hyper-Raman spectra. However, excitation into a region that appears to contain more than one electronic transition gives rise to different intensity patterns in the linear and nonlinear spectra, indicating that different transitions contribute differently to the one-photon and two-photon oscillator strength. The promise of the hyper-Raman technique for examining electronic transitions that are both one- and two-photon allowed is discussed.  相似文献   

6.
In situ techniques are indispensable to understanding many topics in surface chemistry. As a consequence, several spectroscopic methods have been developed to provide molecular‐level information that only spectroscopy can supply. However, as important as this information is, it is just as critical to realize that nearly all surfaces under investigation have spatial heterogeneities of the order of nanometers to millimeters; thus, spatial analysis is very important to the overall interpretation. This Minireview focuses on a few of the recent developments in spectroscopic techniques that can provide spatial, spectroscopic, and in situ information. These techniques include photo‐electron microscopy, infrared and Raman imaging, and nonlinear optical imaging vibrational spectroscopy as applied to topics in corrosion, catalysis and self‐assembled monolayers.  相似文献   

7.
A method is developed for simplifying molecular interpretations of nonlinear optical phenomena. General sum-over-states expressions derived from perturbation theory can be written identically and self-consistently as simple products of lower-order effects. Electric dipole-allowed expressions for the nonlinear polarizability reduce to straightforward formulas directly connected to intuitive molecular properties without sacrificing mathematical rigor. This approach is sufficiently general to allow its application in treating electronic, vibrational, and vibronic interactions for both parametric (passive) processes (e.g., wave-mixing spectroscopies, sum- and difference-frequency generation, harmonic generation, etc.) and nonparametric (active) processes (e.g., hyper-Raman spectroscopy, multiphoton absorption, etc.). Explicit examples for sum-frequency generation and for four-wave mixing provide a convenient context for interpreting higher order nonlinear optical processes.  相似文献   

8.
The doubly resonant IR-UV sum-frequency vibrational spectroscopy (SFVS) of 1,1'-bi-2-naphthol (BN) solution and its dispersion spectra are analyzed and computed using the ZINDO//AM1 calculation and the direct approach of Raman scattering tensor calculation, which is based on calculations of Franck-Condon factors and on differentiation of the electronic transition moments with respect to the vibrational normal modes. The calculated results indicate that, for the most intense vibrational bands observed in the SFVS experiment, the calculated frequencies, symmetry, order, intensities, and pattern of the enhanced vibrational modes agree with experiment qualitatively, and due to the Franck-Condon progression, there are the doublet peaks in the corresponding resonant sum-frequency dispersion spectra. The polarization resonance Raman spectra of BN for the vibrational modes appearing in SFVS are also computed and associated with the experiment SFVS of BN. This direct evaluation approach of Raman tensors may provide a way of assigning the doubly resonant IR-UV SFVS.  相似文献   

9.
Established methods for characterization of tissue and diagnostics, for example histochemistry, magnetic resonance imaging (MRI), X-ray tomography, or positron emission tomography (PET), are mostly not suitable for intra-operative use. However, there is a clear need for an intra-operative diagnostics especially to identify the borderline between normal and tumor tissue. Currently, vibrational spectroscopy techniques (both Raman and infrared) complement the standard methods for tissue diagnostics. Vibrational spectroscopy has the potential for intra-operative use, because it can provide a biochemically based profile of tissue in real time and without requiring additional contrast agents, which may perturb the tissue under investigation. In addition, no electric potential needs to be applied, and the measurements are not affected by electromagnetic fields. Currently, promising approaches include Raman fiber techniques and nonlinear Raman spectroscopy. Infrared spectroscopy is also being used to examine freshly resected tissue ex vivo in the operating theater. The immense volume of information contained in Raman and infrared spectra requires multivariate analysis to extract relevant information to distinguish different types of tissue. The promise and limitations of vibrational spectroscopy methods as intra-operative tools are surveyed in this review.  相似文献   

10.
A comprehensive vibronic coupling model based on the time-dependent wavepacket approach is derived to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering. This approach is particularly well suited for combination with first-principles calculations. Expressions for the Franck-Condon terms, and non-Condon effects via the Herzberg-Teller coupling approach in the independent-mode displaced harmonic oscillator model are presented. The significance of each contribution to the different spectral types is discussed briefly.  相似文献   

11.
A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.  相似文献   

12.
In this paper it is shown how simple application of irreducible tensor calculus provides a powerful method for the symmetry characterization of a wide range of multiphoton transitions in solids, liquids or gases. These methods provide for a systematic classification of distinct symmetry classes for any multiphoton process and facilitate devising suitable polarization studies for spectroscopic application. General results for multiphoton processes up to and including those involving four-photon interactions are presented in the tables for all the common molecular and crystallographic point groups. A new symmetry class labelling scheme is also introduced. Applications are illustrated by reference to two-, three- and four-photon absorption, resonance and non-resonance Raman scattering and hyper-Raman scattering. Whilst the examples principally involve electric dipole coupling, it is demonstrated how the effects of higher multipoles may be incorporated into the results.  相似文献   

13.
We present a general theory to model the spatially resolved non‐resonant Raman images of molecules. It is predicted that the vibrational motions of different Raman modes can be fully visualized in real space by tip‐enhanced non‐resonant Raman scattering. As an example, the non‐resonant Raman images of water clusters were simulated by combining the new theory and first‐principles calculations. Each individual normal mode gives rise its own distinct Raman image, which resembles the expected vibrational motions of the atoms very well. The characteristics of intermolecular vibrations in supermolecules could also be identified. The effects of the spatial distribution of the plasmon as well as nonlinear scattering processes were also addressed. Our study not only suggests a feasible approach to spatially visualize vibrational modes, but also provides new insights in the field of nonlinear plasmonic spectroscopy.  相似文献   

14.
The tip-enhanced near-field Raman (TERS) bands of Rhodamine 6G (R6G), that we reported earlier [Chem. Phys. Lett. 2001, 335, 369.], are assigned on the basis of density-functional theory (DFT) calculations at the 6-311++G(d,p) level. The Raman and infrared intensities as well as frequencies of the vibrational modes are used for band assignments. These vibrational modes, in combination with characterization of resonant electronic transitions using time-dependent DFT calculations, predict spectral changes in resonant Raman and surface-enhanced resonant Raman scatterings of R6G. Moreover, the TERS spectra of R6G are analyzed in detail, where interactions between the tip and R6G molecules and their enhancement mechanisms are discussed. Finally, we propose a novel Raman spectroscopy technique capable of detecting molecular vibrations at sub-nanometer scale.  相似文献   

15.
The electric Lorentz forces acting upon the nuclei of a vibrating molecule cause variations of dynamical regime and determine the intensity of the absorbed radiation. These forces, depending on the local electric field, can be evaluated by frequency-dependent electric and electromagnetic shielding and hypershielding tensors at the nuclei. A general expression from time-dependent perturbation theory is all that one needs to rationalize the molecular response by predicting the effective electric field at the nuclei of a molecule perturbed by an external monochromatic wave. The electric and electromagnetic hypershieldings are connected with the geometrical derivatives of the frequency-dependent dipole polarisability and of the optical rotatory power, respectively. Intensities in Raman spectroscopy and in vibrational Raman optical activity, usually interpreted in terms of these derivatives, can also be discussed via nuclear electromagnetic hypershieldings. Conditions for translational and rotational invariance can be expressed via sum rules for the dynamic hypershieldings.Article submitted for the issue in honour of J. P. Malrieu  相似文献   

16.
Using theoretical simulations based on Hartree-Fock and density-functional theory calculations, the simulated vibrational Raman optical activity spectra of helical conformers of heptasilane are shown to present signatures sensitive to the helicity. These signatures are associated with collective wagging, twisting, and rocking motions. These simulated spectra have been obtained by combining analytical and numerical differentiation procedures to evaluate the geometry derivatives of the optical tensors entering into the expressions of the vibrational Raman optical activity intensities. From an investigation of basis set and electron correlation effects, it is shown that, like for local vibrations, diffuse functions are compulsory for evaluating the vibrational Raman optical activity intensities of collective vibrational motions.  相似文献   

17.
SERS--a single-molecule and nanoscale tool for bioanalytics   总被引:1,自引:0,他引:1  
Surface enhanced Raman scattering (SERS) at extremely high enhancement level turns the weak inelastic scattering effect of photons on vibrational quantum states into a structurally sensitive single-molecule and nanoscale probe. The effect opens up exciting opportunities for applications of vibrational spectroscopy in biology. The concept of SERS can be extended to two-photon excitation by exploiting surface enhanced hyper-Raman scattering (SEHRS). This critical review introduces the physics behind single-molecule SERS and discusses the capabilities of the effect in bioanalytics (100 references).  相似文献   

18.
Chirality is a curious phenomenon that appears in various forms. While the concept of molecular (RS-)chirality is ubiquitous in chemistry, there are also more intricate forms of structural chirality. One of them is the enantiomorphism of crystals, especially molecular crystals, that describes the lack of mirror symmetry in the unit cell. Its relation to molecular chirality is not obvious, but still an open question, which can be addressed with chiroptical tools. Vibrational circular dichroism (VCD) denotes chiral infrared (IR) spectroscopy that is susceptible to both, the molecular as well as the intermolecular space by means of vibrational transitions. When carried out in the solid state, VCD delivers a very rich set of non-local contributions that are determined by crystal packing and collective motion. Since its discovery in the 1970s, VCD has become the method of choice for the determination of absolute configurations, but its applicability reaches beyond towards the study of different crystal forms and polymorphism. This brief review summarises the theoretical concepts of crystal chirality and how computations of solid-state VCD can shed light into the intimate connection of chiral structure and vibrational optical activity.  相似文献   

19.
The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third and fourth energy derivatives), except for a few weak combination bands which were dominated by the anharmonic tensor contributions.  相似文献   

20.
The Raman and hyper-Raman spectra of acetonitrile and its deuterated analog have been investigated by combining experimental analysis and theoretical interpretation. It has been observed that the Raman spectra can easily be reproduced at both the Hartree-Fock and Moller-Plesset second-order levels of approximation and that for these fundamental transitions, inclusion of anharmonicity effects is not essential. On the other hand, the hyper-Raman spectra are more difficult to simulate and interpret. In particular, electron correlation has to be included in order to describe properly the intensity of the CN stretching mode. Then, a pseudo-C(infinity v) symmetry was assumed to better fit the experimental observations. This accounts for the fact that the a1- and e-symmetry modes correspond to time-decoupled vibrations. The e-symmetry modes, associated with nuclear motions perpendicular to the molecular axis are indeed subject to relaxation processes and, except the CCN bending mode, not visible in the hyper-Raman spectra of acetonitrile or of its deuterated analog. This assumption is supported by the gradual decrease of the phenomenon when going from acetonitrile to trichloroacetonitrile, where the presence of the heavier chlorine atoms in the latter reduces the relaxation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号