首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eu~(2+)和Mn~(2+)激活的碱土金属铝酸盐的阴极射线发光   总被引:1,自引:0,他引:1  
本文研究了不同Eu~(2+)浓度激活的Sr_4Al_(14)O_(25),BaMg_2Al_(16)O_(27)和BaMgAl_(10)O_(17)铝酸盐的阴极射线发光性质,并与其光致发光性质进行比较。BaMg_2Al_(26)O_(27):Eu~(2+)中掺入Mn~(2+)后可得到发射带半宽度只有27nm的绿色荧光粉。  相似文献   

2.
以三氧化二铕和正硅酸乙酯为原材料,利用溶胶-凝胶法、高温机械力化学法合成了SiO_2∶Eu~(3+)粉体.用X射线衍射(XRD)、扫描电镜(SEM)表征了材料的结构和形貌,采用激发光谱、发射光谱对荧光粉体的发光性能进行了测量.结果说明:溶胶-凝胶法、高温机械力化学法合成样品的发光性能随着热处理温度的增加先增强后减弱,分别在900℃和600℃达到最好,粉体平均粒度分别为2μm与1μm.与溶胶-凝胶法比较,高温机械力化学法的制备温度降低了300℃.且利用高温机械力化学法制备的样品的发光性能要好于溶胶-凝胶法制备的样品.  相似文献   

3.
采用高温固相法制备了K_2Gd_(1-x-y)(PO_4)(WO_4):x Sm~(3+),y Eu~(3+)新型红色荧光材料,通过利用X射线衍射谱(XRD)、荧光光谱对其结构及发光性能进行了研究。结果表明,稀土离子S~(3+)的掺入没有改变荧光粉的晶相;样品的激发光谱在394 nm有很强的激发峰,与近紫外LED芯片匹配,且Eu~(3+)的~5D_0→~7F_2电偶极跃迁表现出616 nm有较好的红光发射,Eu~(3+)的最佳掺杂量(摩尔分数)为y=0.3;Sm~(3+)进入晶格后,激发峰明显增强和变宽,表明Sm~(3+)对Eu~(3+)的发光起到敏化作用;K_2Gd_(0.68)(PO_4)(WO_4)∶0.3Eu~(3+),0.02Sm~(3+)样品在150℃时发光强度仍为初始温度的78%,具有良好的热稳定性且色纯度高,是一种潜在的白光LED用荧光粉。  相似文献   

4.
赵营刚  石冬梅 《稀土》2015,(3):84-89
为了弥补目前白光LED显色指数的不足,用传统熔融法制备了Eu3+/Tb3+掺杂的硼硅酸盐玻璃,研究了Eu3+/Tb3+掺杂的硼硅酸盐玻璃在391 nm和462 nm激发下的下转换发光性能和能量传递特征。结果表明,用462 nm激发Eu3+掺杂的硼硅酸盐玻璃样品,发现随着Eu3+浓度的增加,Eu2O3含量为0.5%(摩尔分数)时达到发射强度最大值。对于Eu3+/Tb3+共掺的硼硅酸盐玻璃,在462 nm处呈现最强激发峰,其最强发射峰为612 nm的红光。而且随着Tb3+浓度的增加,Eu3+和Tb3+之间的能量传递加强,大大提高了612 nm红光的发射强度。  相似文献   

5.
《稀土》2015,(6)
采用溶胶凝胶-燃烧还原法在1100℃,p H 3~4的条件下制取了Eu~(2+)掺杂铝硅酸锶发光材料,通过TG-DTA、XRD和荧光光谱分析等方法,研究了材料的结构和发光性能,并对Eu~(2+)不同掺杂浓度下的发光性能进行了对比研究。结果表明,样品干凝胶的分解可以分为熔化、有机物的分解及Sr_2Al_2SiO_7∶Eu~(2+)晶相的生成三个阶段,1100℃所有反应完全;Sr_2Al_2SiO_7∶Eu~(2+)发光材料属于正方晶系晶体结构,其激发光谱是位于峰值344 nm~350nm的宽带谱,发射光谱峰值位于455 nm,最大发射光谱强度为7500 mcd;Eu2+掺杂浓度对其发光性能影响较大,在实验条件下掺杂摩尔浓度为0.04时激发光谱和发射光谱强度均达到最大。  相似文献   

6.
红色荧光粉NaBaPO_4:Eu~(3+)的制备及其性能研究   总被引:1,自引:0,他引:1  
采用高温固相法制备单一六方晶系红色荧光粉NaBaPO4:Eu3+。利用XRD、SEM和荧光光谱等对NaBaPO4:Eu3+粉末的理化特性进行表征,考察了激活剂Eu3+的浓度和助熔剂NH4F用量对粉末的晶体结构和发光性能的影响。结果表明:激活剂Eu3+最大掺入量为20%,助熔剂NH4F的最大掺入量为10%,采用该配比合成得到的荧光粉NaBa0.8PO4具有最好的发光性能。在最强激发波长的近紫外光(≈393nm)激发下,样品发射强的红光(≈613nm)和橙光(≈591nm)。  相似文献   

7.
研究采用高温固相法合成Eu~(3+),WO_4~(2-)共掺杂Na_2CaSiO_4系列红色荧光粉。通过X射线粉末衍射和荧光分析,研究荧光粉的结构和发光性能。考察了Eu~(3+),WO_4~(2-)掺杂量对荧光粉发光性能的影响。结果表明,掺杂了Eu~(3+),WO_4~(2-)后Na_2CaSiO_4仍为纯相,属立方晶系结构,但掺杂后晶胞参数发生变化,说明Eu~(3+),WO_4~(2-)已经进入晶格中。荧光粉发光强度随Eu~(3+),WO_4~(2-)掺杂含量的增加而增大。Eu~(3+)在晶体中的含量为20%时(以Na_2CaSiO_4物质的量为基准),荧光粉Na_2CaSiO_4∶Eu~(3+)的发光强度达到最大值。当WO_4~(2-)在晶体中的含量为0.07%时,此时,发射光的强度是掺杂前的2.74倍,色坐标为(0.66,0.34),更接近标准色坐标(0.67,0.33)。  相似文献   

8.
通过高温固相法制备了Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料。采用XRD、SEM、激发光谱、发射光谱和余辉衰减曲线对Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料的微观结构以及光学性能进行了表征,研究结果表明Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)长余辉发光材料的晶体结构和显微结构均未发生明显变化。Yb~(3+)的引入使得Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+)显示出更优良的荧光性能和余辉性能,不同Yb~(3+)掺量对长余辉发光材料的陷阱深度和电子传输速率有显著影响。实验表明,当Yb~(3+)掺杂量为0.03时,Sr_2MgSi_2O_7∶Eu~(2+),Dy~(3+),Yb~(3+)的荧光光谱相对强度最强,且表现出最佳的余辉衰减性能。  相似文献   

9.
《稀土》2017,(1)
采用微波法成功合成了具有特殊荧光性质的Eu~(3+)掺杂LaF_3和CaF_2荧光粉。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、光致发光光谱(PL)等分析手段对样品的结构、形貌以及发光性能进行了表征。深入探讨了酒石酸钠、Eu~(3+)掺杂量对合成荧光粉发光性能的影响。实验结果表明,酒石酸钠添加量和Eu~(3+)的掺杂量对其荧光性能具有较大影响;摩尔比的变化使Eu~(3+)从磁偶极跃迁占主导转化为电偶极跃迁占主导,进而使主峰位置从之前的588 nm处变成613 nm处。但没有引起其他峰位置的变化,说明Eu~(3+)进入了LaF_3和CaF_2的晶格之中,而没有其他的变化。  相似文献   

10.
11.
采用熔盐法在800℃条件下合成了红色荧光粉CaWO4:Eu3+。通过多种手段对样品进行了表征,并与固相法样品进行了对比。XRD结果表明所合成的荧光粉衍射峰位置和标准卡77-2233一致,为单一四方晶系的白钨矿结构;SEM结果表明荧光粉形貌规则,粒度分布均匀,分散性较好;光谱结果显示荧光粉的发射主峰位于614 nm处,激发主峰位于393 nm处,为近紫外激发,色坐标为(0.661,0.343),且色纯度与商品粉相当。由于CaWO4∶Eu3+用熔盐法合成具有工艺简单、能耗低、周期短等特点,合成样品粉体形貌好、粒度分布均匀、结晶度高,样品质量不低于固相法样品,因此,该方法值得研究者关注。  相似文献   

12.
张岚  王喜贵 《稀土》2014,(2):24-29
采用溶胶凝胶法与沉淀法相结合的方法,制备Eu3+∶ZnO1-xSx-SiO2红色发光材料,通过DTA-TG、IR、XRD、TEM、EDS、激发和发射光谱等测试手段,研究材料的结构和发光性能。DTA-TG结果表明,样品在400℃以上,样品结构基本达到稳定状态;IR测试表明,样品中主要存在Si-O-Si键、Zn-S键、Si-O4基团,温度达到800℃时Zn-S键变强,且Si-O-Si三维网络结构的形成有利于Eu3+的掺杂和发光;1000℃时Si-O4基团发生分裂现象,分为三个峰,同时部分ZnS被氧化为ZnO,该变化破坏了SiO2形成的大的三维网络结构,使Si-O-Si桥氧键断开,形成非桥氧键,此结构不利于Eu3+的发光,说明800℃时样品的发光性能最好。XRD测试表明,样品属于晶态,主要以ZnO、ZnS、Zn2SiO4的形式存在。TEM和EDS结果表明,样品呈类球状,含有Zn、O、Si、Eu、S元素,其中S的含量约为2.40%(原子分数),说明S被有效地掺入样品中。激发和发射光谱测试表明,在612 nm检测波长下,其最佳激发波长为紫外光395 nm,最佳退火温度为800℃,Eu3+最佳掺杂量为10%(原子分数),并证明Eu3+∶ZnO1-xSx-SiO2材料发光强度约是Eu3+∶ZnO-SiO2发光强度的6倍,说明S的引入可以有效的提高发光性能。  相似文献   

13.
《稀土》2016,(2)
利用静电纺丝和高温煅烧相结合的方法制备了一维Eu~(3+)掺杂In_2O_3无机纳米纤维,并对其发光性能和发光机理进行研究。借助SEM、TG、XRD和EDX对样品的形貌、热分解、晶相和成分进行分析,利用荧光分光光度计测试了样品在室温下的光致发光性能。结果显示,静电纺Eu~(3+)掺杂前驱体纤维成型良好,经700℃煅烧5 h制备的In_2O_3∶Eu~(3+)纳米纤维仍保持纤维状形貌,但纤维直径与前驱体纤维相比明显减小;样品XRD衍射峰均与立方铁锰矿型In2O3的衍射峰一致,没有出现Eu_2O_3的衍射峰,样品EDX能谱分析表明煅烧后样品中含有In、O、Eu元素,且Eu含量与实际掺杂浓度接近。样品的室温发射光谱显示,经290 nm光激发后,在597 nm、612 nm和629 nm处出现Eu3+的发射峰,其中612 nm处的发射峰强度最大。  相似文献   

14.
《稀土》2016,(3)
采用溶胶凝胶-燃烧法合成Sr_(2-x-y)Ca_xMg_yAl_2SiO_7∶Eu~(2+)稀土长余辉发光材料,通过TG-DTA、XRD、SEM和荧光光谱分析等方法,研究了材料的结构、颗粒形貌和发光性能,并对Ca~(2+)、Mg~(2+)、Eu~(2+)不同掺杂浓度下的发光性能进行了对比研究。结果表明,适量掺杂Ca~(2+)、Mg~(2+)、Eu~(2+)后,基质的晶格结构并未发生变化,为Sr_2Al_2SiO_7晶粒,粒径在1 um~4 um,其激发光谱是位于峰值340 nm~360 nm的宽带谱,发射光谱峰值位于460 nm~480 nm。掺杂Ca~(2+)、Mg~(2+)后发光强度得到提高,镁元素的掺杂可引起发射波长向长波方向移动,而钙元素掺杂可引起发光强度的增大。影响材料发光性能的主要因素是钙,其次是铕,在实验条件下当Ca~(2+)的掺杂量为0.2,Mg~(2+)的掺杂量为0.1,Eu~(2+)的掺杂量为0.04时发光强度为最大,其发射光谱峰值位于469 nm处,最大发射光谱强度达到了8500。  相似文献   

15.
采用高温固相法在1200℃、保温3 h的条件下制备了(Sc,Y)(V_(1-x)B_x)O_(4-x):Eu~(3+)(0≤x≤0.5)系列样品,通过荧光光谱仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)对粉体的荧光性能、结构及形貌进行测试和表征。结果表明,在365 nm紫外光激发下,荧光粉主发射波长位于620 nm,对应于Eu~(3+)的~5D_0→~7F_2跃迁,当x=0.1时,相对发光强度是Sc_(0.73)Y_(0.2)VO_4:Eu_(0.07)~(3+)的1.6倍;在620 nm监控下,存在一个峰值位于337 nm的极强宽带吸收带和396 nm处的弱激发带。与(Sc,Y)VO_4:Eu~(3+)相比,硼的掺杂没有改变样品的四方晶系体心结构,且形貌未发生明显改变,粒度分布均匀、无明显团聚。在397 nm激发下,荧光粉的内量子效率提升了2倍,当温度升高至200℃,其相对发光强度仍保持在92%,显现出高的内量子效率和低的热淬灭效应,适合近紫外激发白光发光二极管(LED)用红色荧光粉。  相似文献   

16.
以工业铝酸钠溶液制备的氢氧化铝为原料,采用高温固相反应法合成了Sr5Al2O7S∶Eu2+红色长余辉材料。用X射线衍射仪及荧光分光光度计对材料的物相及光谱性能进行了分析,考察稀土掺杂量对样品发光性能的影响。结果表明,在稀土激活剂的掺杂量x(Eu)=6%、硼酸加入量9%、1 200℃烧结8h的条件下合成的样品为Sr5Al2O7S∶Eu2+的纯相,激发光谱位于400~500nm,主发射波长在600nm左右,余辉为桔红色。  相似文献   

17.
采用高温固相反应法制备了稀土掺杂荧光粉NaCa0.98PO4:Eu2+0.02,在波长360nm激发光激发下,荧光粉发射波长在500nm左右的绿光。采用Li+为掺杂离子取代基质晶格中的Na+位,通过杂质离子掺杂量对发光性能影响的研究,获得Li+的最佳掺杂量为5mol%。在波长为360mm近紫外光激发下,Na0.95Li0.05Ca0.98PO4:0.02Eu2+的发射强度是NaCa0.98PO4:Eu0.022+的2.5倍,该荧光粉为适用于近紫外激发的白光LED的绿色荧光粉。  相似文献   

18.
采用高温熔融法制备了Mn2+,Yb3+共掺的硼硅酸锌长余辉玻璃。通过荧光发射光谱、余辉发射光谱、余辉衰减曲线及热释光谱对材料的发光性能、结构、陷阱分布进行了表征,重点通过余辉衰减曲线和热释光谱分析了Yb3+掺杂浓度的变化对材料余辉性能和陷阱分布的影响,结果发现:ZBSMY玻璃的余辉发射源自于Mn2+的4T1(4G)→6A1g(6S)跃迁;共掺离子Yb3+按0.1%(摩尔分数)掺杂时,余辉性能最佳,陷阱的拟合深度分别0.79和1.04 eV,且浅陷阱浓度达到最大。  相似文献   

19.
《稀土》2016,(3)
采用高温固相反应合成了SrAl_2O_(4-y)N_y∶Eu~(2+),Dy~(3+)系列长余辉荧光粉,并研究了SrAl_2O_(3.75)N_(0.25)∶Eu~(2+),Dy~(3+)体系的晶体结构、光谱特性、余辉衰减曲线及热释发光曲线。X射线衍射分析结果表明,SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)荧光材料属六方晶系,P6322空间群,晶胞参数a=b=5.14,c=8.462,γ=120°。荧光光谱测试结果表明,SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)的激发光谱和发射光谱均为宽带谱,激发光谱位于283 nm~450 nm,发射光谱的峰值位于487 nm,属于Eu~(2+)的4f65d1→4f7跃迁发射。Eu~(2+)的掺杂量并不改变SrAl_2O_(3.75)N_(0.25)∶Eu~(2+)发射光谱的形状和峰值位置,但对相对发光强度有较大影响,Eu~(2+)的摩尔浓度为2%时相对发光强度最高。余辉衰减曲线表明,Sr_(0.97)Al_2O_(3.75)N_(0.25)∶Eu_(0.02),Dy_(0.01)的余辉衰减符合指数衰减规律,由初始的快衰减和之后的慢衰减两个过程组成。通过热释发光曲线对荧光材料中的陷阱能级进行计算,得出Sr_(0.97)Al_2O_(3.75)N_(0.25)∶Eu_(0.02),Dy_(0.01)的能级陷阱为0.42 V,掺Dy~(3+)有利于提高该荧光材料的初始发光亮度和余辉时间。  相似文献   

20.
采用传统熔融冷却法制备Eu~(3+)掺杂的硼铋钙红光玻璃,研究不同Eu~(3+)掺杂浓度下,玻璃的密度、摩尔体积、折射率等一般物理性质的变化规律;分析玻璃的激发、发射光谱及玻璃的结构和热稳定性,得到了一种高Eu~(3+)浓度掺杂的红光玻璃.研究表明:随着Eu~(3+)浓度的不断升高,玻璃的密度、折射率、玻璃转化温度和热稳定性逐渐升高,摩尔体积先减小后增大;8%(指摩尔分数,下同)为Eu_2O_3的较优掺杂浓度, 9%为玻璃成玻区中最大Eu_2O_3掺杂浓度.玻璃总体对称性均较低,为非晶态结构;玻璃结构致密程度先增大后减小,其结构单元主要包括[BO_3]三角体、[BO_4]四面体、[BiO_3]三角体和[BiO_6]八面体.制备的荧光玻璃因具有高的Eu~(3+)掺杂浓度、与蓝光芯片的有效匹配度、优良的热稳定性、较低的熔点以及合适的折射率等特点,将有望成为白光LED用玻璃陶瓷的良好基质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号