首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Flagellar regeneration in gametes of Chlamydomonas reinhardi is initiated within 15–20 min after flagellar amputation and proceeds at a rapid but decelerating rate until by 90 min flagellar outgrowth is 80–85% complete. Sufficient flagellar protein reserves exist in the cytoplasm to allow regeneration of flagella 1312 normal length. Nevertheless, in vivo labeling with 14C-amino acids shows that microtubule protein and other flagellar proteins are synthesized de novo during flagellar regeneration. To determine whether tubulin is synthesized continuously by gametic cells or whether its synthesis is induced as a consequence of deflagellation, we have isolated polyribosomes from deflagellated and control cells, and analyzed the proteins produced by these polyribosomes during in vitro translation. Two proteins of 53,000 and 56,000 molecular weight which co-migrate with flagellar and chick brain tubulin on SDS-polyacrylamide gels and which selectively co-assemble with chick brain tubulin during in vitro microtubule assembly are synthesized by polyribosomes (or polyadenylated mRNA) from deflagellated cells. No microtubule proteins can be detected in the translation products synthesized by polyribosomes (or mRNA) from control cells, clearly indicating that deflagellation results in the induction of tubulin synthesis.Kinetics of tubulin synthesis demonstrate that induction takes place immediately after deflagellation; polyribosomes bearing tubulin mRNA can be detected in the cytoplasm in as little as 15 min after removal of flagella. Maximal rates of tubulin synthesis occur between 45 and 90 min after deflagellation when approximately 14% of the protein being synthesized by the cell is tubulin. This estimate of tubulin synthesis based on in vitro translation data agrees well with in vivo measurements of flagellar tubulin synthesis. While high levels of tubulin production extend well beyond the period of rapid flagellar assembly, synthesis begins to decline after 90 min, and by 180 min after deflagellation only low levels of tubulin mRNA are detectable in polyribosomes.  相似文献   

2.
3.
Detachment of the flagella of Chlamydomonas induces a rapid accumulation of mRNAs for tubulin and other flagellar proteins. Measurement of the rate of alpha and beta tubulin RNA synthesis during flagellar regeneration shows that deflagellation elicits a rapid, 4-7- fold burst in tubulin RNA synthesis. The synthesis rate peaks within 10- 15 min, then declines back to the predeflagellation rate. Redeflagellation of cells at times before the first flagellar regeneration is completed (and when cells have already accumulated elevated levels of tubulin RNA) induces another burst in tubulin RNA synthesis which is identical to the first in magnitude and duration. This finding indicates that the induction signal may act to simply reprogram the tubulin genes for a transient burst of maximal synthesis. Evidence is presented that the stability of the tubulin RNAs changes during regeneration. Stability changes include both an apparent stabilization during regeneration and accelerated decay following regeneration.  相似文献   

4.
Synthesis of new proteins is required to regenerate full length Chlamydomonas flagella after deflagellation. Using gametes, which have a low basal level of protein synthesis, it has been possible to label and detect the synthesis of many flagellar proteins in whole cells. The deflagellation-induced synthesis of the tubulins, dyneins, the flagellar membrane protein, and at least 20 other proteins which co- migrate with proteins in isolated axonemes, can be detected in gamete cytoplasm, and the times of initiation and termination of synthesis for each of the proteins can be studied. The nature of the signal that stimulates the cell to initiate flagellar protein synthesis is unknown. Flagellar regeneration and accompanying pool depletion are not necessary for either the onset or termination of flagellar protein synthesis, because colchicine, which blocks flagellar regeneration, does not change the pattern of proteins synthesized in the cytoplasm after deflagellation or the timing of their synthesis. Moreover, flagellar protein synthesis is stimulated after cells are chemically induced to resorb their flagella, indicating that the act of deflagellation itself is not necessary to stimulate synthesis. Methods were defined for inducing the cells to resorb their flagella by removing Ca++ from the medium and raising the concentration of K+ or Na+. The resorption was reversible and the flagellar components that were resorbed could be re-utilized to assemble flagella in the absence of protein synthesis. This new technique is used in this report to study the control of synthesis and assembly of flagella.  相似文献   

5.
The quadriflagellate alga polytomella agilis contains several α-tubulins with distinct isoelectric points (McKeithan, T.W., and J.L. Rosenbaum, 1981, J. Cell Biol., 91:352-360). While α-3 is the major component in flagella, α-1 predominates in cytoskeletal microtubules. For determination of whether the differences in α- tubulins are due to distinct genes or to posttranslational modification of a common α-tubulin precursor, poly A+ RNA was isolated from deflagellated and control (nonregenerating) cells and translated in vitro. Approximately twice as much α-1 was synthesized using RNA from deflagellated as compared to control cells; however, there was no detectable synthesis in vitro of α-3 in either. These results suggest that α -3 tubulin is formed in vivo by posttranslational modification of a form co- migrating with, and possibly identical to, cytoskeletal α-tubulin. In the related alga chlamydomonas reinhardii deflagellation greatly stimulates synthesis of tubulin and tubulin mRNA. As in polytomella, the principal α-tubulin synthesized both in vivo and in vitro following deflagellation in chlamydomonas is more basic than the major α-tubulin and appears to correspond to α-1 tubulin in polytomella. The conversion of α-1 to α-3 receives additional support from in vivo labeling and pulse-chase experiments. In addition, in both polytomella and chlamydomonas some conversion of α-1 to α-3 appears to occur even when protein synthesis is inhibited.  相似文献   

6.
Amputating the flagella of Chlamydomonas reinhardtii stimulates increased synthesis of many flagellar proteins within 30 min. We have isolated a series of mutants which are defective in this stimulation, taking advantage of the fact that cells which cannot stimulate flagellar protein synthesis cannot regenerate flagella. More than a dozen mutants which have flagella, but cannot regenerate them after amputation, were isolated and studied by in vivo labeling to identify those non-regenerator mutants which were specifically defective in the induction of flagellar protein synthesis. Ten such mutants have been identified, and in each of them flagellar amputation does not stimulate the synthesis of any of the major flagellar proteins. At least four of the mutants display an interesting conditional phenotype. The synthesis of flagellar proteins after deflagellation is defective only in gametic cells; vegetative cells of these mutants are capable of flagellar protein synthesis after flagellar amputation.  相似文献   

7.
Amputating the flagella of Chlamydomonas reinhardtii stimulates increased synthesis of many flagellar proteins within 30 min. We have isolated a series of mutants which are defective in this stimulation, taking advantage of the fact that cells which cannot stimulate flagellar protein synthesis cannot regenerate flagella. More than a dozen mutants which have flagella, but cannot regenerate them after amputation, were isolated and studied by in vivo labeling to identify those non-regenerator mutants which were specifically defective in the induction of flagellar protein synthesis. Ten such mutants have been identified, and in each of them flagellar amputation does not stimulate the synthesis of any of the major flagellar proteins. At least four of the mutants display an interesting conditional phenotype. The synthesis of flagellar proteins after deflagellation is defective only in gametic cells; vegetative cells of these mutants are capable of flagellar protein synthesis after flagellar amputation.  相似文献   

8.
9.
Detachment of flagella in Chlamydomonas reinhardii stimulates a rapid accumulation of tubulin mRNAs. The induced tubulin mRNAs are normally rapidly degraded following flagellar regeneration, but inhibition of protein synthesis with cycloheximide prevents their degradation. alpha-Tubulin poly(A) tail lengths were measured during normal accumulation and degradation, and in cycloheximide-treated cells. To measure alpha-tubulin mRNA poly(A) chain lengths with high resolution, specific 3' fragments of alpha 1- and alpha 2-tubulin mRNAs, generated by RNase H digestion of mRNA-oligonucleotide hybrids, were sized by Northern analysis. Both alpha-tubulin mRNAs have a newly synthesized poly(A) chain of about 110 adenylate residues. The poly(A) tails shorten with time, and show an average length of 40 to 60 adenylate residues by 90 minutes after deflagellation, at which time induced alpha-tubulin mRNA is being rapidly degraded. Poly(A) loss is significantly accelerated in cycloheximide-treated cells, and this loss is not attributible simply to the longer time the stabilized molecules spend in the cytoplasm. A large fraction of alpha-tubulin mRNA accumulates as mRNA with very short poly(A) tails (less than 10 residues) in the presence of cycloheximide, indicating that deadenylated alpha-tubulin mRNAs can be stable in vivo, at least in the absence of protein synthesis. The rate and extent of poly(A) loss in cycloheximide are greater for alpha 2-tubulin mRNA than for alpha 1-tubulin mRNA. This difference cannot be attributed to differential ribosome loading. This finding is interesting in that the two mRNAs are very similar in sequence with the exception of their 3' untranslated regions.  相似文献   

10.
C D Silflow  J L Rosenbaum 《Cell》1981,24(1):81-88
We constructed and characterized recombinant cDNA clones containing alpha- and beta-tubulin DNA sequences. The inserted DNA was determined to code for alpha- and beta-tubulin by positive hybridization-selection. The selected mRNA was translated in vitro, and the translation products were shown to be alpha- or beta-tubulin by comigration with flagellar alpha- and beta-tubulin on one- and two-dimensional gels and by immunoprecipitation with antibodies specific for alpha- and beta-tubulin. Hybridization of the cloned tubulin probes with Chlamydomonas DNA indicated that there are at least two genes each for alpha- and beta-tubulin in this organism. No evidence of cross-hybridization between alpha- and beta-tubulin DNA sequences was found. Because previous experiments had shown that tubulin synthesis was stimulated in response to flagellar amputation, the tubulin clones were used to analyze the levels of tubulin sequences in RNA from cells before and after deflagellation. Hybridization of the tubulin cDNA probes with total or polyadenylated RNA indicated that tubulin sequences in RNA increased within 8 min following deflagellation, reached maximal levels by 50 min and began to decrease by 80 min after deflagellation. One hybridization band was detected with use of the beta-tubulin probe, but RNA in two size classes hybridized to the alpha-tubulin probe.  相似文献   

11.
Macromolecular syntheses during the quick-change act of Naegleria   总被引:3,自引:0,他引:3  
  相似文献   

12.
13.
The messenger RNAs coding for α- and β-tubulin have been isolated from embryonic chick brain. Although the mRNAs for the two tubulin subunits have been resolved on native gels, they are very similar in molecular weight (650,000 daltons) as judged by mobility on denaturing gels containing methyl mercury. The mRNAs for β- and γ-actin have also been resolved on native gels, but migrate as an unresolved peak (molecular weight 650,000–700,000 daltons) under denaturing conditions. Since the nonmuscle actins are substantially smaller proteins than α- and β-tubulin, the large size of chick nonmuscle actin mRNAs suggests an unusually long untranslated region.Since tubulin and actin polypeptides are internal structural proteins, one would expect them to be synthesized only on free polysomes. Translation of mRNA derived directly from a purified membrane fraction or by puromycin release from that fraction, however, showed the synthesis of a small proportion of these proteins on polysomes that are membrane-associated. Peptide mapping has in all cases confirmed the identity of the products of cell-free synthesis with authentic α-tubulin, β-tubulin and actin. Approximately 67% of the α- and 13% of the β-tubulin chains produced by in vitro translation are competent for co-assembly into microtubules with added carrier microtubule protein.  相似文献   

14.
E Y Lai  C Walsh  D Wardell  C Fulton 《Cell》1979,17(4):867-878
The programmed de novo synthesis of flagellar tubulin during the hour-long differentiation of Naegleria gruberi from amoebae to flagellates is our paradigm for the study of gene expression during cell differentiation. This paper reports the efficient translation of flagellar tubulin mRNA in the wheat germ cell-free system directed by total or polyadenylated RNA extracted from differentiating cells. The tubulin in the in vitro product has a subunit molecular weight of 55,000, separates into alpha and beta subunits under suitable conditions of polyacrylamide gel electrophoreis and co-polymerizes with calf brain tubulin. At least half of the tubulin synthesized in vitro is precipitated by antibodies specific to flagellar tubulin, and the immunoprecipitated tubulin subunits yield peptide maps similar to those of outer doublet tublin. Flagellar tubulin is the predominant protein synthesized in the cell-free system, and amounts to about 5% of the polypeptides whose synthesis is directed by total RNA from differentiating cells. In contrast, little or no flagellar tubulin is synthesized when the cell-free system is directed by RNA extracted from amoebae prior to differentiation. Translation assays show that at least 92% of the flagellar tubulin mRNA appears during differentiation. The time course of appearance of this mRNA was measured by quantitative immunoprecipitation of the cell-free products. Under conditions where cells from flagella 60 min after initiation of differentiation, translatable flagellar tubulin mRNA was first detected at 20 min, reached a maximum at about 60 min and then declined. An excellent correlation was observed between the amount of translatable flagellar tubulin mRNA and the previously measured rates of flagellar tubulin synthesis in vivo. These results indicate that synthesis of flagellar tubulin is a direct reflection of the abundance of its mRNA, and provide the molecular techniques for dissection of the factors that regulate the rapid appearance of this structural protein during differentiation.  相似文献   

15.
The alga polytomella contains several organelles composed of microtubules, including four flagella and hundreds of cytoskeletal microtubules. Brown and co-workers have shown (1976. J. Cell Biol. 69:6-125; 1978, Exp. Cell Res. 117: 313-324) that the flagella could be removed and the cytoskeletans dissociated, and that both structures could partially regenerate in the absence of protein synthesis. Because of this, and because both the flagella and the cytoskeletons can be isolated intact, this organism is particularly suitable for studying tubulin heterogeneity and the incorporation of specific tubulins into different microtubule-containing organelles in the same cell. In order to define the different species of tubulin in polytonella cytoplasm, a (35)S- labeled cytoplasmic fraction was subjected to two cycles of assembly and disassembly in the presence of unlabeled brain tubulin. Comparison of the labeled polytomella cytoplasmic tubulin obtained by this procedure with the tubulin of isolated polytomella flagella by two-dimensional gel electrophoresis showed that, whereas the β-tubulin from both cytoplasmic and flagellar tubulin samples comigrated, the two α-tubulins had distinctly different isoelectic points. As a second method of isolating tubulin from the cytoplasm, cells were gently lysed with detergent and intact cytoskeletons obtained. When these cytoskeletons were exposed to cold temperature, the proteins that were released were found to be highly enriched in tubulin; this tubulin, by itself, could be assembled into microtubules in vitro. The predominant α-tubulin of this in vitro- assembled cytoskeletal tubulin corresponded to the major cytoplasmic α-tubulin obtained by coassembly of labeled polytomella cytoplasmic extract with brain tubulin and was quite distinct from the α-tubulin of purified flagella. These results clearly show that two different microtubule-containing organelles from the same cell are composed of distinct tubulins.  相似文献   

16.
In Chlamydomonas rein-hardtii, flagellar amputation stimulates an induction in the synthesis of flagellar proteins which allows the cells to rapidly regenerate their flagella. The induction involves the coordinate accumulation and rapid degradation of a large number mRNAs, including those encoding the tubulins. The post-induction degradation of induced tubulin mRNAs has been shown to differ from the consti-tutive turnover pathway in two ways: (1) the rate of degradation is accelerated, and (2) degradation is prevented by inhibition of protein synthesis. In this report, it is shown that the post-induction degradation of all deflagellation-induced mRNAs examined is prevented by cycloheximide (CX), suggesting they all may be degraded via the same pathway. A cell-free decay system has been developed to investigate the degradation pathway. At least two characteristics of tubulir mRNA degradation are reproducible in these extracts: (1) endogenous α-tubulin mRNA is less stable than constitutive mRNAs in the same extract and (2) α-tubulin mRNA in extracts prepared from CX-treated cells (CX ex-tracts) is significantly more stable than it is in extracts from untreated cells (control extracts). This indicates that the mechanism by which CX blocks rapid degradation of tubulin mRNA in vivo is not simply by preventing its translation and suggests the involvement of an altered trans-factor. The difference in tubulin mRNA stability in the two extracts is maintained when the extracts are prepared under conditions that dissociate ribosomes from mRNPs, indicating intact polysome structure is not necessary. Tubulin mRNA-containing polysomes isolated from control and CX extracts are equally stable when assayed alone. However, the poly-somes from control extracts are more sensitive to exogenous RNAse treatment than are those from CX extracts, indicating a structural difference. There are no detectable differences in soluble factors that influence tubulin mRNA degradation rate between control and CX extracts; addition of excess soluble factors to either control or CX extracts does not alter the tubulin mRNA degradation in the extract, nor does a simple one-to-one combination of the two extracts result in stabilization or destabilization of the whole population of tubulin mRNAs in the mixture. The deflagellation-induced mRNAs, as a group, are shown to be particularly susceptible to a nuclease activity in extracts, inhibitable by vanadyl ribonucleoside complexes, which does not appear to attack constitutive mRNAs. It is proposed that a structural difference in the tubulin mRNPs produced in the presence and absence of CX underlies their differences in stabilities, and that a common nuclease targets the induced flagellar protein mRNAs. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The flagella of the green alga Scherffelia dubia are covered by scales which consist of acidic polysaccharides and glycoproteins. Experimental deflagellation results in the regeneration of flagella complete with scales. During flagellar regeneration, scales are newly synthesized in the Golgi apparatus, exocytosed and deposited on the growing flagella. Flagellar regeneration is dependent upon protein synthesis and N-glycosylation, as it is blocked by cycloheximide and partially inhibited by tunicamycin. Metabolic labeling with [35S]methionine/cysteine demonstrated that scale-associated proteins were not newly synthesized during flagellar regeneration, suggesting that the proteins deposited on regenerating flagella were drawn from a pool. Quantitative immunoelectron microscopy using a monospecific antibody directed against a scale-associated protein of 126 kDa (SAP126) revealed that the pool of SAP126 was primarily located at the plasma membrane, with minor labeling of the scale reticulum and trans-Golgi cisternae, both before deflagellation and during flagellar regeneration. Since SAP126 was sequestered during flagellar regeneration into secretory vesicles together with newly synthesized scales, it is concluded that the persistent presence of SAP126 in the trans-Golgi cisternae during scale biogenesis requires retrograde transport of the protein from the plasma membrane to the Golgi apparatus. Received: 3 July 1999 / Accepted: 21 August 1999  相似文献   

18.
Four mRNAs (alpha- and beta-tubulin, flagellar calmodulin and Class-I), specifically expressed when Naegleria amebae differentiate into flagellates, were followed at 5-10 min intervals during the temperature-shock induction of multiple flagella in order to better understand how basal body and flagellum number are regulated. Surprisingly, tubulin synthesis continued during the 37 min temperature shock. An initial rapid decline in alpha- and beta-tubulin and flagellar calmodulin mRNAs was followed by a rapid re-accumulation of mRNAs before the temperature was lowered. mRNA levels continued to increase until they exceeded control levels by 4-21%. Temperature shock delayed flagella formation 37 min, produced twice as much tubulin protein synthesis and three fold more flagella. Labeling with an antibody against Naegleria centrin suggested that basal body formation was also delayed 30-40 min. An extended temperature shock demonstrated that lowering the temperature was not required for return of mRNAs to near control levels suggesting that induction of multiple flagella and the formation of flagella per se are affected in different ways. We suggest that temperature-shock induction of multiple flagella reflects increased mRNA accumulation combined with interference with the regulation of the recently reported microtubule-nucleating complex needed for basal body formation.  相似文献   

19.
The behaviour of a pool of flagellar precursors, assayed by the ability of cells to regenerate flagella in the absence of de novo protein synthesis, has been examined during organelle morphogenesis in the biflagellate alga Chlamydomonas. The results demonstrate that flagellar elongation can continue even when this pool is apparently empty and suggest that 2 sources of precursors are available to the regenerating flagella: those pre-existing in the cellular pool and those synthesized de novo. Further evidence for this was obtained by subjecting regenerating cells to pulses of cycloheximide. Cells exposed to this drug during the first 60 min post deflagellation formed only half-length (5-mum) flagella, whereas a pulse administered after this point allowed the formation of longer flagella and suggested that some de novo protein synthesis was required for the formation of full-length flagella, although it was not a prerequisite for the initiation of regeneration. In addition, it was found that, subsequent to the removal of the cycloheximide, flagellar regeneration did not recommence immediately, but was delayed for a period of approximately 45 min, irrespective of length of flagella formed prior to drug inhibition. The nature of this cycloheximide-induced delay is unclear and certain alternatives, based on the exhaustion of structural/regulatory components are considered. Although it is not possible to distinguish between these alternatives, tubulin is not the limiting component, since a pool of this protein is present when flagellar elongation is prevented by cycloheximide.  相似文献   

20.
Chlamydomonas reinhardtii cells shed their flagella in response to environmental stress. Under favorable conditions, flagella are quickly regrown. To learn more about the signals that trigger flagellar excision and regrowth we have investigated inositol phospholipid metabolites, molecules implicated in signal transduction in several other systems. After deflagellation by low pH or mastoparan, a potent activator of G proteins, there was a rapid increase in levels of inositol 1,4,5-trisphosphate measured by use of receptor-binding assays and HPLC. This increase was concomitant with a decrease in levels of phosphatidylinositol 4,5-bisphosphate and was followed by an increase in phosphatidic acid, results consistent with activation of phospholipase C and diacylglycerol kinase. Additional experiments suggest that this activated phospholipase C is not important for flagellar regrowth but plays a role in informing the excision apparatus of the environmental stress. Addition of neomycin (an inhibitor of phospholipase C) before exposure of cells to low pH or mastoparan prevented the increase in inositol 1,4,5-trisphosphate and also prevented deflagellation. Addition of neomycin after deflagellation blocked increases in inositol 1,4,5-trisphosphate that normally followed deflagellation, but did not block flagellar assembly. Furthermore, a flagellar excision-defective mutant, fa-1, did not shed its flagella in response to low pH or mastoparan, yet both of these agents activated phospholipase C in these cells. The results suggest that activation of phospholipase C, possibly via a G protein, is a proximal step in the signal transduction pathway inducing deflagellation in Chlamydomonas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号