首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The efficiency and sustainability of microbial fuel cell (MFC) are heavily dependent on the cathode performance. We show here that the use of graphite fiber brush (GBF) together with graphite granules (GGs) as a basal material for biocathode (MFC reactor type R1) significantly improve the performance of a MFC compared with MFCs using GGs (MFC reactor type R2) or GFB (MFC reactor type R3) individually. Compared with R3, the use of the combination biocathode (R1) can shorten the start-up time by 53.75%, improve coulombic efficiencies (CEs) by 21.0 ± 2.7% at external resistance (REX) of 500 Ω, and increase maximum power densities by 38.2 ± 12.6%. Though the start-up time and open circuit voltage (OCV) of the reactor R2 are similar to R1, the CE (REX = 500 Ω) and maximum power density of R2 are 21.4 ± 1.7% and 38.2 ± 15.6% lower than that of R1. Fluorescence in situ hybridization (FISH) analyses indicate the bacteria on cathodes of R1 and R2 are richer than that of R3. Molecular taxonomic analyses reveal that the biofilm formed on the biocathode surface is dominated by strains belonging to Nitrobacter, Achromobacter, Acinetobacter, and Bacteroidetes. Combination of GFB and GGs as biocathode material in MFC is more efficient and can achieve sustainable electricity recovery from organic substances, which substantially increases the viability and sustainability of MFCs.  相似文献   

2.
Hydrogen production in a microbial electrolysis cell (MEC) can be achieved by either setting the anode potential with a potentiostat, or by adding voltage to the circuit with a power source. In batch tests the largest total gas production (46 ± 3 mL), lowest energy input (2.3 ± 0.3 kWh/m3 of H2 generated), and best overall energy recovery (?E+S = 58 ± 6%) was achieved at a set anode potential of EAn = −0.2 V (vs Ag/AgCl), compared to set potentials of −0.4 V, 0 V and 0.2 V, or an added voltage of Eap = 0.6 V. Gas production was 1.4 times higher with EAn = −0.2 V than with Eap = 0.6 V. Methane production was also reduced at set anode potentials of −0.2 V and higher than the other operating conditions. Continuous flow operation of the MECs at the optimum condition of EAn = −0.2 V initially maintained stable hydrogen gas production, with 68% H2 and 21% CH4, but after 39 days the gas composition shifted to 55% H2 and 34% CH4. Methane production was not primarily anode-associated, as methane was reduced to low levels by placing the anode into a new MEC housing. These results suggest that MEC performance can be optimized in terms of hydrogen production rates and gas composition by setting an anode potential of −0.2 V, but that methanogen proliferation must be better controlled on non-anodic surfaces.  相似文献   

3.
Microbial electrolysis cell (MEC) is a promising and significant approach for hydrogen production, owing to the low energy consumption and high yield/recovery efficiency. In this review, bibliometric analysis has been conducted on current research trends of MECs, followed by the content analysis of the direction and strategy for improving the hydrogen production to enlarge MECs’ applicability. Results show that energy concerns are the primary focus in MEC studies, and particular attention has been paid to decreasing internal resistance and hydrogen diffusion that may be crucial for the improvement of the yield of hydrogen production and recovery. Moreover, this study particularly reviews the development of the cathode catalysts and explores the applicability of different MEC configurations, including single-and two-chamber MECs with different kind of membranes. It also identifies the potential advantages of porous membranes as a separator in MECs and discusses the porous membrane, in conjunction with advancing hydrogen-harvesting approaches, is crucial for the improvement of hydrogen production. Finally, capital cost of MECs has been necessarily discussed, which would be significant, valuable, and beneficial to the academic research and the industrial community.  相似文献   

4.
Flat anodes placed close to the cathode or membrane to reduce distances between electrodes in microbial electrolysis cells (MECs) could be used to develop compact reactors, in contrast to microbial fuel cells (MFCs) where electrodes cannot be too close due to oxygen crossover from the cathode to the anode that reduces performance. Graphite fiber brush anodes are often used in MECs due to their proven performance in MFCs. However, brush anodes have not been directly compared to flat anodes in MECs, which are completely anaerobic, and therefore oxygen crossover is not a factor for felt or brush anodes. MEC performance was compared using flat felt or brush anodes in two-chamber, cubic type MECs operated in fed-batch mode, using acetate in a 50 mM phosphate buffer. Despite placement of felt anodes next to the membrane, MECs with felt anodes had a lower hydrogen gas production rate of 0.32 ± 0.02 m3-H2/m3-d than brush anodes (0.38 ± 0.02 m3-H2/m3-d). The main reason for the reduced performance was substrate-limited mass transfer to the felt anodes. To reduce mass transfer limitations, the felt anode electrolyte was stirred, which increased the hydrogen gas production rate to 0.41 ± 0.04 m3-H2/m3-d. These results demonstrate brush electrodes can improve performance of bioelectrochemical reactors even under fully anaerobic conditions.  相似文献   

5.
Platinum has excellent catalytic capabilities and is commonly used as cathode catalyst in microbial electrolysis cells (MECs). Its high cost, however, limits the practical applications of MECs. In this study, precious-metal-free cathodes were developed by electrodepositing NiMo and NiW on a carbon-fiber-weaved cloth material and evaluated in electrochemical cells and tubular MECs with cloth electrode assemblies (CEA). While similar performances were observed in electrochemical cells, NiMo cathode exhibited better performances than NiW cathode in MECs. At an applied voltage of 0.6 V, the MECs with NiMo cathode accomplished a hydrogen production rate of 2.0 m3/day/m3 at current density of 270 A/m3 (12 A/m2), which was 33% higher than that of the NiW MECs and slightly lower than that of the MECs with Pt catalyst (2.3 m3/day/m3). At an applied voltage of 0.4 V, the energy efficiencies based on the electrical energy input reached 240% for the NiMo MECs. These results demonstrated the great potential of using carbon cloth with Ni-alloy catalysts as a cathode material for MECs. The enhanced MEC performances also demonstrate the scale-up potential of the CEA structure, which can significantly reduce the electrode spacing and lower the internal resistance of MECs, thus increasing the hydrogen production rate.  相似文献   

6.
High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 ± 12 A/m3, hydrogen yield of 3.2 ± 0.3 mol H2/mol acetate, and gas production rate of 1.6 ± 0.2 m3 H2/m3·d, compared to MECs with catholytes externally sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near the membrane separating the chambers was 83 ± 4%, similar to that obtained with the cathode placed more distant from the membrane (84 ± 4%). Using a carbon cloth cathode instead of the stainless steel mesh cathode did not significantly affect performance, with all reactor configurations producing similar performance in terms of total gas volume, COD removal, rcat and overall energy recovery. These results show MEC performance can be improved by using a saline catholyte without pH control.  相似文献   

7.
An investigation on the performance of hydrogen production by simultaneous saccharification and fermentation (SSF) in a dual-chamber microbial electrolysis cell (MEC) was carried out to consider different anolyte pH levels and culture temperatures, and the influences of anolyte pH value and culture temperature on changes of current, organic acid and pH value were also evaluated. The maximal hydrogen production rate (HPR) of 2.46 mmol/L/D (hydrogen energy recovery 219.02%) was obtained at the initial anolyte pH of 6.5. Within the range of the tested operation temperatures (30–50 °C), the optimal temperature for hydrogen production by SSF in the MEC systems was 35 °C. Moreover, the contents of organic acids and reducing sugar significantly changed with varying in initial anolyte pH and temperature levels. The result indicates that a low initial anolyte pH value and high culture temperature was beneficial to hydrolysis of cellulose, and a high initial anolyte pH value and a moderate culture temperature to hydrogen production.  相似文献   

8.
In this work, a dual-chamber microbial electrolysis cell (MEC) with concentric cylinders was fabricated to investigate hydrogen production of three different lignocellulosic materials via simultaneous saccharification and fermentation (SSF). The maximal hydrogen production rate (HPR) was 2.46 mmol/L/D with an energy recovery efficiency of 215.33 % and a total energy conversion efficiency of 11.29 %, and the maximal hydrogen volumetric yield was 28.67 L/kg from the mixed substrate. The concentrations of reducing sugar and organic acids, the pH, and the current in the MEC system during hydrogen production were monitored. The concentrations of reducing sugar, butyrate, lactate, formate, and acetate initially increased during SSF and then decreased due to hydrogen production. Moreover, the highest current was obtained from the mixed substrate, which means that the mixed substrates are beneficial to microbial growth and metabolism. These results suggest that lignocellulosic materials can be used as substrate in a low-energy-input dual-chamber MEC system for hydrogen production.  相似文献   

9.
Microbial electrolysis cells (MECs) could be integrated with dark fermentative hydrogen production to increase the overall system yield of hydrogen. The influence of catholyte pH on hydrogen production from MECs and associated parameters such as electrode potentials (vs Ag/AgCl), COD reduction, current density and quantity of acid needed to control pH in the cathode of an MEC were investigated. Acetate (10 mM, HRT 9 h, 24 °C, pH 7) was used as the substrate in a two chamber MEC operated at 600 mV and 850 mV applied voltage. The effect of catholyte pH on current density was more significant at an applied voltage of 600 mV than at 850 mV. The highest hydrogen production rate was obtained at 850 mV, pH 5 amounting to 200 cm3stp/lanode/day (coulombic efficiency 60%, cathodic hydrogen recovery 45%, H2 yield 1.1 mol/mol acetate converted and a COD reduction of 30.5%). Within the range (18.5–49.4 °C) of temperatures tested, 30 °C was found to be optimal for hydrogen production in the system tested, with the performance of the reactor being reduced at higher temperatures. These results show that an optimum temperature (approximately 30 °C) exists for MEC and that lower pH in the cathode chamber improves hydrogen production and may be needed if potentials applied to MECs are to be minimised.  相似文献   

10.
The low conversion efficiency of substrate is one of the main bottlenecks in dark fermentation for bio-H2 production. Herein, an enhanced H2 yield from corn stalk was achieved by integrating dark fermentation and single chamber microbial electrolysis cells (MECs). In the dark fermentation stage, a H2 yield of 129.8 mL H2/g-corn stalk and an average H2 production rate of 1.73 m3/m3 d were recorded at 20 g/L of corn stalk and initial pH 7.0. The effluent from dark fermentation was diluted and further employed as feedstock to generate H2 by MECs. A H2 yield of 257.3 mL H2/g-corn stalk, an HPR of 3.43 ± 0.12 m3/m3 d and an energy efficiency of 166 ± 10% were obtained with the effluent COD of 3995.5 mg/L under 0.8 V applied voltage. During MECs operation stage, about 90 ± 2% of acetate was converted to H2 and the corresponding COD removal reached 44 ± 2% in MECs. Overall, the H2 yield can reach 387.1 mL H2/g-corn stalk by integrating dark fermentation and MECs, which had nearly tripled as against that of dark fermentation.  相似文献   

11.
12.
Binder-free NiO/MnO2-carbon felt electrode is prepared with a facile two-step hydrothermal method. The NiO self-grown on the carbon felt is used as the skeleton structure to support the in-situ growth of MnO2. Both the core and shell materials are excellent pseudocapacitance materials. The compositing of such pseudocapacitance metal oxides can produce synergistic effects, so that the modified electrode has a high capacitance. NiO/MnO2-carbon felt electrode also possesses a high specific surface area, super hydrophilicity and good biocompatibility, which are conducive to the enrichment of typical exoelectrogen Geobacter. As the anode, NiO/MnO2-carbon felt electrode can effectively improve the electricity generation and methyl orange (MO) wastewater degradation performances of microbial fuel cell (MFC). The highest output voltage and the maximum power density of MFC with NiO/MnO2-carbon felt anode are respectively 652 mV and 628 mW m?2, which are much higher than those of MFC with MnO2-carbon felt anode (613 mV, 544 mW m?2), NiO-carbon felt anode (504 mV, 197 mW m?2) and unmodified carbon felt anode (423 mV, 162 mW m?2). The decolourization efficiency and the chemical oxygen demand (COD) removal rate of MO for MFC with NiO/MnO2-carbon felt anode are respectively 92.5% and 58.2% at 48 h.  相似文献   

13.
Microbial electrolysis cells (MECs) are a new bio-electrochemical method for converting organic matter to hydrogen gas (H2). Palm oil mill effluent (POME) is hazardous wastewater that is mostly formed during the crude oil extraction process in the palm oil industry. In the present study, POME was used in the MEC system for hydrogen generation as a feasible treatment technology. To enhance biohydrogen generation from POME in the MEC, an empirical model was generated using response surface methodology (RSM). A central composite design (CCD) was utilized to perform twenty experimental runs of MEC given three important variables, namely incubation temperature, initial pH, and influent dilution rate. Experimental results from CCD showed that an average value of 1.16 m3 H2/m3 d for maximum hydrogen production rate (HPR) was produced. A second-order polynomial model was adjusted to the experimental results from CCD. The regression model showed that the quadratic term of all variables tested had a highly significant effect (P < 0.01) on maximum HPR as a defined response. The analysis of the empirical model revealed that the optimal conditions for maximum HPR were incubation temperature, initial pH, and influent dilution rate of 30.23 °C, 6.63, and 50.71%, respectively. Generated regression model predicted a maximum HPR of 1.1659 m3 H2/m3 d could be generated under optimum conditions. Confirmation experimentation was conducted in the optimal conditions determined. Experimental results of the validation test showed that a maximum HPR of 1.1747 m3 H2/m3 d was produced.  相似文献   

14.
We propose targets, based on real world data, necessary to design a financially viable microbial electrolysis cell (MEC) for the treatment of domestic wastewater. By reducing the cost of the anode and current collecting materials by 90%, a viable organic loading rate would be between 800 and 1,400g-COD/m3/d (2–3A/m2). The anode and current collector materials account for 94% of the total material costs; consequently, cost savings in any other material are moot. If the bioanode can be reused after 20 years, further, significant savings could be achieved. To develop targets we used real world data, for the first time, to evaluate the financial viability of MECs against the current predominant method of wastewater treatment: activated sludge. We modelled net present values for eight potential scenarios and the performances required for MECs to break-even.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号