共查询到20条相似文献,搜索用时 32 毫秒
1.
Ali Hossein Imani Reza Ojani Jahan-Bakhsh Raoof 《International Journal of Hydrogen Energy》2018,43(17):8267-8277
Offering new techniques for efficient design and fabrication of inexpensive and earth-abundant catalysts for the development of oxygen evolution electrodes is a fundamental approach to promote sustainable energy processes. Herein, we report the in situ synthesis of a novel organic-inorganic composite directly onto carbon paste electrode (CPE) surface, as a robust substrate to incorporate Nickel-Iron (Ni-Fe) metal ions without using any binders or energy consumer techniques. Polyoxometalate (POM) and o-Anisidine (oA) are composite components that can be easily combined on the electrode surface (oA-POM/CPE). Ascribed to the synergy of context and metal ions, the as-prepared electrode affords a high catalytic activity and stability towards oxygen evolution reaction (OER), and gained a current density of 10 mA cm?2 at overpotential of 330 mV. Moreover, the distinct electrocatalytic activity is illustrated by varying the amount of Fe in immersion solution, which proves the change made in percentage ratio of Ni-Fe in immersion solution that consequently affects Ni-Fe percentage value on electrode surface. This represents the competition between metal cations in creating complex with composite. Collectively, this simple strategy provides a promising way for the development of effective and non-noble metal-based OER electrocatalysts. 相似文献
2.
Large-area manganese oxide nanorod arrays as efficient electrocatalyst for oxygen evolution reaction
Shuang Chen Teng Zhai Xi-Hong Lu Man-Zhi Zhang Zhuo-Ying Li Chang-Wei Xu Yexiang Tong 《International Journal of Hydrogen Energy》2012
Large-area manganese oxide nanorod arrays (MnO2 NRAs) have been directly grown vertically on Ti foil with a uniform length and diameter by a simple electrochemical method without any templates. The deposition temperature is one of the most important parameters for formation MnO2 NRAs and at 25 °C no MnO2 NRAs can be obtained. The results show that MnO2 has high activity and good stability for oxygen evolution reaction (OER) and the structure of nanorod arrays pronounced enhances MnO2 activity. The onset potential of MnO2 NRAs is lower than that of Pt foil and lower 401 mV than that of MnO2 film, indicating that the structure of MnO2 NRAs shows an easy OER for water split. The MnO2 NRAs may be of great potential in electrochemical water split. 相似文献
3.
Linmin Cao Zhipeng Lin Jilin Huang Xiang Yu Xiaoxian Wu Bodong Zhang Yunfeng Zhan Fangyan Xie Weihong Zhang Jian Chen Weiguang Xie Wenjie Mai Hui Meng 《International Journal of Hydrogen Energy》2017,42(2):876-885
A non metal catalyst for the oxygen reduction reaction is prepared by simply pyrolyzing ion exchange resin D113 in NH3. The product is nitrogen doped amorphous carbon. The pyrolysis of D113 exchanged with iron ion results in nitrogen doped graphitic carbon. The amorphous carbon is easier to be doped by NH3 with higher nitrogen content. The nitrogen doped amorphous carbon is more active than graphitized carbon, together with much improved stability. The higher activity is explained by the higher total nitrogen content and higher pyridinic/graphitic nitrogen percentage. The higher stability is because there is no loss or dissolution of the active sites. The results of this work prove metal element and graphitization of carbon are not necessary factors for nitrogen doped carbon as non noble metal catalyst for the oxygen reduction reaction. 相似文献
4.
Manganese oxide with different morphology as efficient electrocatalyst for oxygen evolution reaction
Xue-Fang Luo Jing Wang Zhi-Shan Liang Sheng-Zhou Chen Zi-Li Liu Chang-Wei Xu 《International Journal of Hydrogen Energy》2017,42(10):7151-7157
Three-dimensional (3D) manganese oxides consisted of tetragonal phase Mn3O4 and α-MnO2 with different morphology have been directly grown vertically on Ti foil by a simple electrochemical method without any template and used as the catalysts for oxygen evolution reaction (OER). The results show that manganese oxides with different morphology show high activity and good stability for OER and the manganese oxide (MnOx) nanowire arrays obtained at 70 °C show higher activity and better stability than MnOx with cotton wool structure and MnOx nanosheet arrays. 相似文献
5.
Oxygen evolution reaction (OER) is an essential reaction for overall electrochemical water splitting. In this present study, we adopt a facile electrochemical deposition method to synthesize the Li-doped NiFeCo oxides for OER in an alkaline medium. The scanning electron microscopy, X-ray diffraction, Brunauer-Emmet-Teller method and X-ray photo-electron spectroscopy provides the information of morphology, structure, specific surface area and electronic state of the electrocatalysts respectively. Investigates the electrochemical properties by the thin-film technique on a rotating disk electrode and in a single-cell laboratory water electrolyzer connects with electrochemical impedance spectroscopy. Among the catalysts under investigation, Ni0·9Fe0·1Co1·975Li0·025O4 exhibits the highest activity towards oxygen evolution reaction, and explains the activity by the oxygen binding energy; such knowledge can be helped to develop better catalyst. We achieve onset over potential 220 mV and receive 10 mA cm?2 current density at over potential 301 mV with Tafel slope 62 mV dec?1 in 1 M KOH solution. The results are similar to recently published catalysts in the literature. In water electrolyzer, the Ni0·9Fe0·1Co1·975Li0·025O4 modified nickel foam anode exhibits a current density of 143 mA cm?2 at a cell voltage of 1.85 V in 10 wt% KOH and a temperature of 50 °C. 相似文献
6.
Sufeng Zhang Ning Wei Zijie Yao Xinyu Zhao Min Du Qiusheng Zhou 《International Journal of Hydrogen Energy》2021,46(7):5286-5295
Enhancing the catalytic activity of Co3O4 electrocatalysts featuring abundant oxygen vacancies is required to enable their application in oxygen evolution reaction (OER). However, developing a harmless defect engineering strategy based on mild conditions to realize such an enhancement remains a challenge. Here, ultrathin Co3O4 nanosheets with abundant oxygen vacancies were prepared through a simple two-step method comprising a hydrothermal process and pre-oxidation to study the catalytic activity of the nanosheets toward OER. The ultrathin sheet structure and the Co3O4 nanosheets surface provide abundant active sites. The oxygen vacancy not only improves the catalyst activity, but also improves the electron transfer efficiency. These advantages make ultrathin Co3O4 nanosheets with abundant oxygen vacancies an excellent electrocatalyst for oxygen evolution. In an alkaline medium, ultrathin Co3O4 nanosheets exhibited excellent OER catalytic activity, with a small overpotential (367 mV for 10 mA/cm2) and faster reaction kinetics (65 mV/dec).Moreover, the electrocatalyst still maintained 68% of its original catalytic activity after 24 h operation. This work provides an extensive and reliable method for the preparation of low-cost and highly efficient OER electrocatalysts. 相似文献
7.
Nimai Bhandary Pravin P. Ingole Suddhasatwa Basu 《International Journal of Hydrogen Energy》2018,43(6):3165-3171
A layered binary Mn-Fe oxide as bi-functional electro-catalyst with nanopetals morphology is grown on porous carbon paper for the first time via one-step electrodeposition process. The electrocatalyst is characterized by X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive spectroscopy analysis. SEM analysis demonstrates notable morphology viz. nanopetals of the Mn-Fe oxide grown on carbon paper. The electrocatalytic activity is checked for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline medium. Rotating disk electrode (RDE) voltammetry is carried out to study the ORR kinetics, which proves that ORR process follows four-electron pathway in alkaline medium. Oxygen evolution reaction study reveals that it has higher activity for OER with a lower onset potential of 1.6 V vs RHE and higher current density of 11.5 mA/cm2 at 2.0 V vs RHE reference electrode. 相似文献
8.
Kai-Li Yan Xiao Shang Zhen Li Bin Dong Jing-Qi Chi Yan-Ru Liu Wen-Kun Gao Yong-Ming Chai Chen-Guang Liu 《International Journal of Hydrogen Energy》2017,42(27):17129-17135
A facile two-step method has been applied to synthesize novel binary metal NiCoS nanorods supported on nickel foam (NF) as electrocatalysts for oxygen evolution reaction (OER). Firstly, electrodeposition process is conducted to fabricate binary Ni-Co hydroxides on NF (NiCo/NF). Then, a hydrothermal sulfuration of NiCo/NF has been adopted to prepare NiCoS nanorods arrays uniformly grown on the surface of NF (NiCoS/NF). XRD indicates that NiCoS/NF has mixed crystal phases of Ni3S2, CoS and Co9S8. SEM images display the uniform NiCoS nanorods composed of many vertical nanosheets on the surface, implying more exposed active sites. OER measurements demonstrate that NiCoS/NF has better activity with an overpotential of 370 mV to reach 100 mA cm?2 than NiCo/NF and CoSx/NF. Electrochemical impedance spectroscopy (EIS) tests confirm the faster charge-transfer rate of NiCoS/NF and smaller Tafel slope derived from binary NiCoS, implying the excellent electrocatalytic performances of binary metal sulfides. 相似文献
9.
Hong-Yan Chen Ai-Jun Wang Lu Zhang Junhua Yuan Qian-Li Zhang Jiu-Ju Feng 《International Journal of Hydrogen Energy》2018,43(49):22187-22194
Uniform trimetallic AuPtPd nanodendrites (NDs) were synthesized by a simple and quick method, using l-proline and ascorbic acid (AA) as eco-friendly structure-guiding agent and reducing agent, respectively. The obtained AuPtPd NDs displayed greatly enlarged electrochemically active surface area (27.65 m2 g?1metal) relative to home-made AuPt nanocrystals (NCs, 21.76 m2 g?1metal), AuPd NCs (3.91 m2 g?1metal), Pt black (20.88 m2 g?1metal) and Pd black (8.30 m2 g?1metal). For hydrogen evolution and oxygen reduction reactions, AuPtPd NDs showed excellent catalytic performances relative to the referenced catalysts. These results reveal the practical applications of the as-obtained catalyst in energy storage and conversion. 相似文献
10.
Abid Ali Duygu Akyüz Muhammad Adeel Asghar Atıf Koca Bahadır Keskin 《International Journal of Hydrogen Energy》2018,43(2):1123-1128
Oxygen evolution reaction (OER) has significant impact on the overall electrochemical water splitting. We introduce, for the first time, a facile approach towards the fabrication of versatile electrode composed of free-standing multiwalled carbon nanotubes (MWCNTs) as electrocatalyst for the water splitting reaction. Directly extracted MWCNTs as sheets from vertically grown arrays transferred over the glass substrate, are used without any post treatment as a working electrode for OER. Onset potential of 1.60 V was achieved for MWCNTs which is significantly reduced as compared to platinum based metal electrode (1.72 V) with excellent current density. No surface modification, metal-free nature, flexibility and low cost with excellent catalytic activity proved this material as a promising candidate for the replacement of metal based electrodes in electrochemical water splitting. 相似文献
11.
Jing-Qi Chi Kai-Li Yan Zi Xiao Bin Dong Xiao Shang Wen-Kun Gao Xiao Li Yong-Ming Chai Chen-Guang Liu 《International Journal of Hydrogen Energy》2017,42(32):20599-20607
Trimetallic NiFeCo selenides (NiFeCoSex) anchored on carbon fiber cloth (CFC) as efficient electrocatalyst for oxygen evolution reaction (OER) in alkaline medium have been synthesized via a facile two-step method. Firstly, trimetallic NiFeCo (oxy) hydroxides have been electrodeposited on CFC support (NiFeCo/CFC). Secondly, a solvothermal selenization process has been used to convert NiFeCo/CFC into NiFeCoSex/CFC using N, N-dimethylformamide (DMF) as solvent. The composition and homogeneous distribution of NiFeCoSex/CFC nanoparticles are determined by XRD, XPS, SEM elemental mapping and EDX images. Furthermore, SEM images reveal that NiFeCoSex/CFC has volcano-shaped morphology with rough surface and homogenously distributed on the surface of CFC, which may provide more active sites for OER. The electrochemical measurements show that trimetallic NiFeCoSex/CFC possesses the better electrocatalytic activity with the lower overpotential (150 mV at 10 mA cm?2), Tafel slope (85 mV dec?1), larger double-layer capacitance (200 mF cm?2) and long-term stability than unary or binary metal selenides. The enhanced activity of NiFeCoSex/CFC may be attributed to the trimetallic NiFeCo selenides and selenides-CFC synergistic interaction. It may offer a promising way to design transition multimetallic selenides supported on conductive support as electrocatalysts for OER. 相似文献
12.
Uday Pratap Azad Monika Singh Sourav Ghosh Ashish Kumar Singh Vellaichamy Ganesan Akhilesh Kumar Singh Rajiv Prakash 《International Journal of Hydrogen Energy》2018,43(45):20671-20679
We present a facile way to synthesize BSCF by using glycine-nitrate auto-combustion followed by annealing at different conditions, which work as high-performance bifunctional electrocatalyst for oxygen evolution (OER) as well as oxygen reduction (ORR) reactions in alkaline solution with comparatively better efficiency for OER. Annealing condition plays an important role towards catalytic performance due to morphological control and surface composition. Although, there is no significant change in onset potentials but these catalysts afford a current density >10 mA cm?2 at the potential of 1.65 V for oxygen evolution reaction and a current density >2.5 mA cm?2 at the potential of 0.009 V for oxygen reduction reaction with respect to RHE in 0.1 M KOH. The underlying mechanism for ORR and OER as well as catalytic activity differences were understood with the help of different analytical characterization techniques. 相似文献
13.
Xiao Xu Tao Yuan Yingke Zhou Yawei Li Jiming Lu Xiaohui Tian Deli Wang Jie Wang 《International Journal of Hydrogen Energy》2014
Boron-doped graphene and nitrogen-doped graphene have been respectively synthesized by a facile thermal solid-state reaction of graphene oxide with boric acid and urea. The morphology and structure of the doped graphene have been characterized by the scanning electron microscopy, infrared spectroscopy, ultraviolet visible spectroscopy and X-ray photoelectron spectroscopy, while the electrocatalytic activity toward oxygen reduction reaction has been evaluated by the cyclic voltammetry. It has been shown that the morphology, structure, doping level and fashions of graphene could be finely tuned by the thermal treatment conditions, and which have substantial effects on the activity of oxygen reduction reaction. The boron-doped graphene and nitrogen-doped graphene calcined at 700 °C demonstrate excellent electrocatalytic oxygen reduction activities as the appropriate introduction of boron and nitrogen functional groups in graphene, which might be promising for low temperature fuel cell applications. 相似文献
14.
Bo Xu Yiqiang Sun Zhiming Chen Shuying Zhao Xiaodong Yang Haijing Zhang Cuncheng Li 《International Journal of Hydrogen Energy》2018,43(45):20721-20726
Facile fabrication of high-performance catalyst based on low-cost metals for sustainable hydrogen evolution is still a matter of cardinal significance. However, synthetic approaches for electrocatalyst are usually complicated and the yields are often low. Herein, we report a one-step simple method for the large-scale synthesis of Co/Ni-MoO2 composite as efficient and stable hydrogen evolution reaction (HER) electrocatalyst to drive 10 mA cm?2 current density with a low overpotential of 103 mV in basic media. Co-MoO2 and Ni-MoO2 were also prepared using this method with overpotential of 137 and 130 mV, respectively, to gain the same current density. These results indicate that this facile synthesis approach is of great practical importance as it can be easily used for large-scale preparation of electrocatalysts in industry. 相似文献
15.
Premnath Kumar Arun Prasad Murthy Leticia S. Bezerra Bibiana K. Martini Gilberto Maia Jagannathan Madhavan 《International Journal of Hydrogen Energy》2021,46(1):622-632
Hydrogen production through water splitting is an efficient and green technology for fulfilling future energy demands. Carbon nanotubes (CNT) supported Ni2P has been synthesized through a simpler hydrothermal method. Ni2P/CNT has been employed as efficient electrocatalysts for hydrogen and oxygen evolution reactions in acidic and alkaline media respectively. The electrocatalyst has exhibited low overpotential of 137 and 360 mV for hydrogen and oxygen evolution reactions respectively at 10 mA cm?2. Lower Tafel slopes, improved electrochemical active surface area, enhanced stability have also been observed. Advantages of carbon support in terms of activity and stability have been described by comparing with unsupported electrocatalyst. 相似文献
16.
Raja Arumugam Senthil Junqing Pan Xiaojian Yang Yanzhi Sun 《International Journal of Hydrogen Energy》2018,43(48):21824-21834
In this work, nickel-iron layered double hydroxides nanoflakes are grown on nickel foam by a facile in-situ complexation precipitation method. The fabricated nickel-iron layered double hydroxides/nickel foam with special 3D structure with large electrochemical activated surface area is proposed as a greatly enhance electrode material for oxygen evolution reaction. The electrochemical properties of the as-fabricated nickel-iron layered double hydroxides/nickel foam electrode are evaluated using 1 mol L?1 KOH as electrolyte. The obtained electrochemical results show that the fabricated nickel-iron layered double hydroxides/nickel foam electrode exhibits a low overpotential of 245 mV at current density of 10 mA cm?2 with small Tafel slope of 27 mV dec?1. Also, it displays a much longer durability of 20 h with very small decay of 0.02% as compared with 3D nickel foam, IrO2 and the related catalysts reported. Therefore, this study indicates that the nickel-iron layered double hydroxides/nickel foam is a promising electrode material for oxygen evolution reaction due to its facile preparation method, low cost and environmentally friendly nature. 相似文献
17.
In this work, a nitrogen-doped graphene (NG) catalyst was prepared using a hydrothermal method with ammonia as the nitrogen precursor, which was followed by a freeze-dry process. The catalyst was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscope, and X-ray photoelectron spectroscopy. The bifunctional catalytic activities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) were investigated using cyclic voltammetry in an alkaline electrolyte. The results indicate that nitrogen is successfully doped in the NG catalyst, and the catalyst has a loose structure that was produced during the freeze-dry process. The catalyst exhibits an excellent ORR activity with an onset potential of −0.08 V and a high OER activity with an obvious OER current at 0.7 V. The rotating-disk-electrode test results indicate that the ORR process catalyzed by the NG catalyst involves a mix of the two-electron and four-electron transfer pathways. This work preliminarily explores the bifunctional catalytic properties for the ORR and the OER of nitrogen-doped graphene materials in alkaline electrolyte. 相似文献
18.
Guang-Lan Li Cai-Di Liu Li-Fang Yuan Qiu-Mei Wu Wen-Wen Chen Guang-Chun Cheng Bei-Bei Yang Ce Hao 《International Journal of Hydrogen Energy》2018,43(3):1386-1395
Controlled synthesis of efficient core-shell non-precious metal catalysts for oxygen reduction reaction (ORR) is undoubtedly crucial but challenging for the extensive application of fuel cells and metal-air batteries. Herein, we prepared a core-shell structured Fe/FeCx nanoparticles and porous carbon composited catalyst (Fe/FeCx@NC) via a facile two-step heat treatment strategy. The Fe/FeCx@NC-800?0.5 prepared with secondary anneal at 800 °C for 0.5 h exhibits superior ORR performance to the commercial Pt/C in terms of comparable onset potential, higher half-wave potential, and outstanding long-term durability in alkaline media. Through combining the physical and electrochemical characterizations of Fe/FeCx@NC-T?t with different anneal temperature and precursors, the outstanding ORR performance of Fe/FeCx@NC-800?0.5 is caused by the synergistic effect between Fe/FeCx core and enriched pyridinic N- and graphitic N-doped carbon shell as well as porous carbon with large specific surface area. The structure-activity relationship of core-shell structured Fe–N–C catalysts for ORR provides directions for the development of advanced nonprecious metals catalysts. 相似文献
19.
Wen Zhang Degang Fu Yunfei Bai Chunwei Yuan 《International Journal of Hydrogen Energy》2017,42(16):10925-10930
Efficient and robust Earth-abundant catalysts for hydrogen evolution reaction (HER) is one of the key components for clean energy technologies aimed at reducing future carbon emissions. Here, an in-situ anion exchange approach to prepare hierarchical nanostructures consisting of ultrathin Cu2-xSe nanosheet is reported. With the aid of the selenylation process and the hierarchical ultrathin nanostructure, the nanostructured Cu2-xSe/Cu foam electrode achieved considerably enhanced HER performance with a large geometric current density of ?100 mA cm?2 at a small overpotential of 313 mV and outstanding long-term operational stability. Significant improvement of electrocatalytic activity for Cu2-xSe catalyst could be attributed to the promoted mass diffusion/transfer properties, which results from its special structural feature. Meanwhile, the overpotential associated with the catalyst/substrate interface could be effectively eliminated due to the self-supported construction. We believe that this work will lead towards the further development of Cu-based chalcogenides for applications in electrocatalysis and energy conversion. 相似文献
20.
Qingxin Li Shaohui Zhang Wei Xuan Haikun Zhou Wenying Tian Xiaoting Deng Jingwen Huang Zhiyong Xie Feng Liu Xueduan Liu Yili Liang 《International Journal of Hydrogen Energy》2021,46(53):26886-26896
Microbial fabrication is eco-friendly for nobel-metal catalysts typically used in proton exchange membrane fuel cell (PEMFC). In our study, nano-Pd electrocatalysts were successfully prepared by using three Shewanellas as precursors through hydrogen reduction (200 °C) and carbonization (800 °C). The analysis revealed that the catalysts showed outstanding ORR electrocatalytic performance via a predominant four-electron oxygen reduction pathway in alkaline medium. The best performance was obtained for Pd/HNC-32, which showed a mass activity at 0.526 A mg?1, 3.78 times higher than that of commercial Pd/C. Shewanella putrefaciens CN-32 was a more effective Pd-adsorbent. The enhanced performance can be ascribed to the small Pd-particle size and uniform dispersion on microbial support, which results from stronger hydrophilicity of Shewanella putrefaciens CN-32. The content of nitrogen is another key to the performance of Pd/HNC-32. This study developed a promising strategy for screening microbial strains for electrocatalyst fabrication. 相似文献