首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemical reduction behaviour of 3% chromium doped (Cr–Fe2O3) and undoped iron oxides (Fe2O3) were investigated by using temperature programmed reduction (TPR). The reduced phases were characterized by X-ray diffraction spectroscopy (XRD). The reduction processes were achieved with 10% H2 in nitrogen (%, v/v), 10% and 20% of carbon monoxide (CO) in nitrogen (%, v/v). In hydrogen atmosphere, the TPR results indicate that the reduction of Cr–Fe2O3 and Fe2O3 proceed in three steps (Fe2O3 → Fe3O4 → FeO → Fe) with Fe3O4 and FeO as intermediate states. A complete reduction to metallic iron for both samples occurred at 900 °C. As for CO reductant, the profiles show the reduction of Fe2O3 also proceeded in three steps with a complete reduction occurs at 900 °C in 10% CO with no sign of carbide formation. Nevertheless, a 20% CO was able to reduce the completely at lower temperature at 700 °C and there is a formation of iron carbide at 500 °C but the carbide disappeared as the reduction temperature increase. Meanwhile in 10% CO atmosphere, Cr–Fe2O3 shows a better reducibility compared to Fe2O3 with a complete reduction at 700 °C, which is 200 °C lower than Fe2O3. A Cr dopant in the Fe2O3 can lead to formation of various forms of iron carbides such as F2C, Fe5C2, Fe23C6 and Fe3C as the CO concentration was increased to 20%. The transformation profile of iron phases during carburization follows the following forms, Fe2O3 → Fe3O4 → iron carbides (FexC). The XRD pattern shows the diffraction peaks of Cr–Fe2O3 are more intense with improved crystallinity for the characteristic peaks of Fe2O3 compare to undoped Fe2O3. No visible sign of chromium particles peaks in the XRD spectrum that indicates the Cr particles loaded onto the iron oxide are well dispersed. The uniform dispersion with no sign of sintering effects of the Cr dopant on the Fe2O3 was confirmed by FESEM. The study shows that Cr dopant gives a better reducibility of iron oxide but promotes the formation of carbides in an excess CO concentration.  相似文献   

2.
Use of hydrogen, oxygen, and carbon oxide semiconductor sensors made of metal oxides allows controlling electronically the content of these gases in operation of many hydrogen setups, cells and devices. Present review-paper gives a general idea of achievements in this field.  相似文献   

3.
Temperature programmed reduction (TPR) analysis was applied to investigate the chemical reduction progression behavior of molybdenum oxide (MoO3) catalyst. The composition and morphology of the reduced phases were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The reduction progression of MoO3 catalyst was attained with different reductant types and concentration (10% H2/N2, 10% and 20% CO/N2 (%, v/v)). Two different modes of reduction process were applied. The first approach of reduction involved non-isothermal mode reduction up to 700 °C, while the second approach of reduction involved the isothermal mode reduction for 60 min at 700 °C. Hydrogen temperature programmed reduction (H2-TPR) results showed the reduction progression of three-stage reduction of MoO3 (Mo6+ → Mo5+ → Mo4+ → Mo0) with Mo5+ and Mo4+. XRD analysis confirmed the formation of Mo4O11 phase as an intermediate phase followed by MoO2 phase. After 60 min of isothermal reduction, peaks of metallic molybdenum (Mo) appeared. Whereas, FESEM analysis showed porous crater-like structure on the surface cracks of MoO2 layer which led to the growth of Mo phase. Meanwhile, the reduction of MoO3 catalyst in 10% carbon monoxide (CO) showed the formation of unstable intermediate phase of Mo9O26 at the early stage of reduction. Furthermore, by increasing 20% CO led to the carburization of MoO2 phase, resulted in the formation of Mo2C rather than the formation of metallic Mo, as confirmed by XPS analysis. Therefore, the presented study shows that hydrogen gave better reducibility due to smaller molecular size, which contributed to high diffusion rate and achieved deeper penetration into the MoO3 catalyst compared to carbon monoxide reductant. Hence, the reduction of MoO3 in carbon monoxide atmosphere promoted the formation of Mo2C which was in agreement with the thermodynamic assessment.  相似文献   

4.
Electrochromic (EC) NiOz and WOy thin films were prepared by sputtering and were used in a feasibility study aimed at investigating mixtures of these two oxides. The object was to identify a suitable electrolyte, compatible with both NiOz and WOy. To that end we carried out cyclic voltammetry (CV) in potassium hydroxide (KOH), propionic acid, and lithium perchlorate in propylene carbonate (Li-PC). WOy could be coloured in propionic acid and Li-PC, while NiOz could be coloured only in KOH. Both films showed best stability in Li-PC, which hence is well suited for further studies of mixed NiOz and WOy.  相似文献   

5.
The effect of carbon monoxide (CO) on the reduction of Pt ion to metallic Pt is studied. The modified GC electrode with platinum metal synthesized in the presence of CO shows excellent activity for hydrogen evolution reaction (HER). Despite the decrease in the loading of platinum (4.5 × 10−4 mg cm−2) a substantial increase in its electrocatalytic activity towards HER is observed in a sulfuric acid environment. The observed electrocatalytic activity is comparable to available commercial catalysts like Pt/C. Tafel slope was obtained to be 34 mV.dec−1, and the overpotential was acquired to be 31 mV at the mass activity of 10 mA mg−1 were observed which was very close to kinetic parameters of Pt/C catalyst.  相似文献   

6.
The aims of this study are to produce Fe3O4 from Fe2O3 using hydrogen (H2) and carbon monoxide (CO) gases by focusing on the influence of these gases on reduction of Fe2O3 to Fe3O4 at low temperature (below 500 °C). Low reduction temperature behavior was investigated by using temperature programmed reduction (TPR) with the presence of 20% H2/N2, 10% CO/N2, 20% CO/N2 and 40% CO/N2. The TPR results indicated that the first reduction peak of Fe2O3 at low temperature appeared faster in CO atmosphere compared to H2. Furthermore, reducibility of first stage reduction could be improved when increasing CO concentration and reduction rate were followed the sequence as: 40% CO > 20% CO > 10% CO > 10% H2. All reduction peaks were shifted to higher temperature when the CO concentration was reduced. Although, initial reduction by H2 occurred slower (first peak appeared at higher temperature, 465 °C) compared to CO, however, it showed better reduction with Fe2O3 fully reduced to Fe at temperature below 800 °C. Meanwhile, complete reduction happened at temperature above 800 °C in 10% and 20% CO/N2. Thermodynamic calculation revealed that CO acts as a better reducer than H2 as the enthalpy change of reaction (ΔHr) is more exothermic than H2 and the change in Gibbs free energy (ΔG) at 500 °C is directed to more spontaneous reaction in converting Fe2O3 to Fe3O4. Therefore, formation of magnetite at low temperature was thermodynamically more favorable in CO compared to H2 atmosphere. XRD analysis explained the formation of smaller crystallite size of magnetite by H2 whereas reduction of CO concentration from 40, 20 to 10% enhanced the growth of highly crystalline magnetite (31.3, 35.5 and 39.9 nm respectively). All reductants were successfully transformed Fe2O3 → Fe3O4 at the first reduction peak except for 10% CO/N2 as there was a weak crystalline peak due to remaining unreduced Fe2O3. Overall, less energy consumption needed in reducing Fe2O3 to Fe3O4 by CO. This proved that CO was enhanced the formation of magnetite, encouraged formation of highly crystalline magnetite in more concentrated CO, considered better reducing agent than H2 and these are valid at lower temperature.  相似文献   

7.
Improved catalytic centres with a minimum mass-loading of expensive platinum (Pt) have been anticipated for various catalytic applications, for instance preferential oxidation (PROX) of carbon monoxide (CO) in the presence of Hydrogen. Here, we report the synthesis of nano-Pt on the surface of copper (Cu) nanoparticles (NPs) supported on γ-Al2O3 (Ptn(Cu)/γ-Al2O3) via galvanic displacement reaction (GDR) for the catalytic CO-PROX reaction. Ptn(Cu)/γ-Al2O3 showed much improved CO-PROX performance compared to that of the as-synthesized Ptl(Cu)/γ-Al2O3 catalyst. Importantly, no significant conversion of hydrogen at a lower temperature range (<200 °C) is observed during the CO-PROX reaction which is one of the essential prerequisites for the CO-PROX reaction. Moreover, Ptn(Cu)/γ-Al2O3 showed the durable, long-term catalytic CO-PROX performance for 120 h. These results infer that realization of nano-Pt on the surface of the Cu NPs holds the promise as the catalytic centres with the minimum mass-loading of Pt for the CO-PROX reaction.  相似文献   

8.
The design and development of inexpensive and highly efficient electrocatalysts for hydrogen production from water splitting are highly crucial for green energy and the hydrogen economy. Herein, we report phosphine reduced an iron-doped tungsten oxide nanoplate/reduced graphene oxide nanocomposite (Fe-WOxP/rGO) as an excellent electrocatalyst for the hydrogen evolution reaction. This electrocatalyst was synthesized using a hydrothermal method, followed by reduction with phosphine (PH3), which was generated from sodium hypophosphite. The catalyst onset potential, Tafel slope, and stability were investigated. Accordingly, Fe-WOxP/rGO exhibited impressively high electrocatalytic activity with a low overpotential of 54.60 mV, which is required to achieve a current density of 10 mAcm?2. The Tafel slope of 41.99 mV dec?1and the linear sweep voltammetry curve is almost the same as 2000 cycles and electrolysis under static overpotential (54.60 mV) is remain for more than 24 h in 0.5 M H2SO4. The catalytic activity and conductivity of Fe-WOxP/rGO were higher than WOXP, Fe-WOxP and WOxP/rGO. Such an outstanding performance of the Fe-WOxP/rGO nanocomposite is attributed to the coupled synergic effect between high oxygen vacancies formation on tungsten oxide in the nanoplate-like structure of Fe-WOxP and rGO nanosheet, making it as an excellent electrocatalyst for hydrogen evolution reaction.  相似文献   

9.
We report on a hydrogen oxidation reaction (HOR) catalyst system composed of gold nanoparticles (Au NPs) and tungsten oxide (WO3). Previously, we reported that Au NPs could be activated for HOR by sonochemical heating and quenching. However, we also found that the activated Au NPs were poisoned by protons, the HOR product. In order to further improve the catalytic behavior of Au NPs, we employed tungsten oxide as a part of the support and a co-catalyst, by which proton spillover could be achieved. Au NPs supported on WO3/C were synthesized. The intermediates and final product were characterized by powder X-ray diffraction, energy dispersive X-ray spectroscopy, and transmission electron microscopy. Electrocatalytic activity of the samples for HOR was investigated by the linear sweep voltammetry with rotating disk electrode technique, which showed the disappearance of the proton poisoning of Au NPs in contact with WO3. Therefore, with sonication treatment, the Au NPs and WO3 composite showed a very high and stable activity for HOR.  相似文献   

10.
This work aims to define general criteria to allow theoretical and experimental design of new materials with high hydrogen content, with a view to their potential application as moderators in reactors at high temperatures and hydrogen storage materials.  相似文献   

11.
The combined oxidation of hydrogen and carbon monoxide over platinum in micro-combustors at catalytic surface temperatures below 600 K was studied numerically, using a two-dimensional computational fluid dynamics (CFD) model with detailed heterogeneous and homogeneous reaction mechanisms and multicomponent transport. Simulations were performed at different surface temperatures and feed compositions to study the kinetic interplay between hydrogen and carbon monoxide. A sensitivity analysis of the heterogeneous reaction mechanism was performed to identify the rate-controlling steps. Finally, possible mechanisms for the observed behavior were discussed. It was shown that there is significant kinetic interplay between hydrogen and carbon monoxide. Carbon monoxide significantly inhibits the catalytic oxidation of hydrogen. In contrast, the presence of hydrogen was found to promote the catalytic oxidation of carbon monoxide, with the largest effect shown for the small addition of hydrogen, then this effect progressively decreases with the further increase of hydrogen concentration. Accordingly, the apparent reaction order with respect to hydrogen changes from positive to negative, then to zero. The promoting effect of hydrogen can be attributed to the carboxyl pathway, which is crucial to describe the process.  相似文献   

12.
The purposes of this study are to reduce Fe2O3 using hydrogen (H2) and carbon monoxide (CO) gases at a high temperature zone (500 °C–900 °C) by focusing on the influence of reduction gas concentrations. Reduction behavior of hematite (Fe2O3) at high temperature was examined using temperature programmed reduction (TPR) under non-isothermal conditions with the presence of 10% H2/N2, 20% H2/N2, 10% CO/N2, 20% CO/N2 and 40% CO/N2. The TPRCO results indicated that the first and second reduction peaks of Fe2O3 at a temperature below 660 °C appeared rapidly when compared to TPRH2. However, TPRH2 exhibited a better reduction in which Fe2O3 entirely reduced to Fe at temperature 800 °C (20% H2) without any remaining of wustite (FeO) whereas a temperature above 900 °C is needed for a complete reduction in 10% H2/N2, 10% and 20% CO/N2. Furthermore, the reduction of hematite could be improved when increasing CO and H2 concentrations since reduction profiles were shifted to a lower temperature. Thermodynamic calculation has shown that enthalpy change of reaction (ΔHr) for all phases transformation in CO atmosphere is significantly lower than in H2. This disclosed that CO is the best reductant as it is a more exothermic, more spontaneous reaction and able to initiate the reduction at a much lower temperature than H2 atmosphere. Nevertheless, the reduction of hematite using CO completed at a temperature slightly higher compared to H2. It is due to the presence of an additional carburization reaction which is a phase transformation of wustite to iron carbide (FeO → Fe3C). Carburization started at the end of the second stage reduction at 600 °C and 630 °C under 20% and 40% CO, respectively. Therefore, reduction by CO encouraged the formation of carbide, slower the reduction and completed at high temperature. XRD analysis disclosed the formation of austenite during the final stage of a reduction under further exposure with high CO concentration. Overall, less energy consumption needed during the first and second stages of reduction by CO, the formation of iron carbide and austenite were enhanced with the presence of higher CO concentration. Meanwhile, H2 has stimulated the formation of pure metallic iron (Fe), completed the reduction faster, considered as the strongest reducing agent than CO and these are effective at a higher temperature. Proposed iron phase transformation under different reducing agent concentrations are as followed: (a) 10% H2, 20% H2 and 10% C; Fe2O3 → Fe3O4 → FeO → Fe, (b) 20% CO; Fe2O3 → Fe3O4 → FeO → Fe3C → Fe and (c) 40% CO; Fe2O3 → Fe3O4 → FeO → Fe3C → Fe → F,C (austenite).  相似文献   

13.
Electron beam lithography was used to fabricate platinum μ-contacts over tungsten oxide nanorods formed on a mica substrate. This made possible the measurement of sensorial response of these self-assembled tungsten oxide nanorods to hydrogen gas for the first time. The nanorods were prepared by thermal evaporation from an oxide source. Consequently, two types of conductometric sensors were assembled: a) percolating network of nanorods and b) set of individually contacted WO3 nanorods. The preparation procedures are described in detail and the comparison of response of both types of assemblies is given. The first sensorial measurements revealed a good response of the b) type of sensor and the minimum repeatedly detected concentration of H2 was 50 ppm.  相似文献   

14.
The impedance of a proton exchange membrane fuel cell powered by hydrogen contaminated with carbon monoxide, ranging from 150 to 300 ppb, is measured and discussed. The tested range of CO concentration complied with the fuel standard specified in the ISO standards. Studies of influence of CO contamination on operation of PEMFC are crucial for further development and commercialization of fuel cells for automotive applications. Based on the measurements made by Dynamic Electrochemical Impedance Spectroscopy (DEIS), changes in the cell impedance as a function of time were determined. An innovative integral-differential methodology for the analysis of chrono-impedance diagrams was developed, which enabled the extraction of the impedance spectra describing the anodic processes. This way of analysis is completely novel and original and it was not presented before in literature. The ability to monitor and diagnose the anode's operation under real operation conditions is demonstrated. The reversibility of the CO adsorption process and the loss of anode catalytic activity were verified. All this issues were not possible to be studied before with the use of classic impedance measurements.  相似文献   

15.
The tungsten oxide nanorods loaded with ruthenium nanoparticles (Ru-WO3) nanocomposite were synthesized by hydrothermal method and impregnation method. The properties of Ru-WO3 catalysts were characterized by various methods, such as BET, XRD, SEM, TEM, EDS and XPS. The results show that hydrogen spillover occurs on the surface of WO3 and the catalytic activity of Ru-WO3 in hydrogenation of cyclohexene increases with the increase of reaction time. Subsequently, the Ru-WO3 catalysts was used to hydrogenate N-propylcarbazole (NPCZ). Compare with commercial 0.5 wt% Ru–Al2O3 catalyst, Ru-WO3 can realize the rapid hydrogen uptake of NPCZ at a lower metal loading (0.34 wt%) and lower temperature (150 °C), which is attributed to the increase of reactive sites caused by hydrogen spillover.  相似文献   

16.
Elemental boron is one of the most valuable high-tech boron products and it has highest energy density 14 kcal/g in the world for this type of product. With the rapid advancements in technology in recent years, a demand has grown for a light materials with functionality and excellent properties such as high hardness, high melting point, high strength, high chemical resistance and nuclear characteristics that can be used in the fields of aerospace, aviation, automotive and solar cells. In this study boron oxide was reduced using carbon monoxide via a batch system to produce elemental boron. To determine the most suitable conditions for the reduction reaction different temperatures and different CO/B2O3 mol ratio parameters were studied. As a result of thermodynamic calculations for the most efficient parameters for reaction temperature was 140–210 °C and the CO/B2O3 mol ratio being studied was 3/1 and 2/1 for the batch system. Boron oxide reduction was performed by carbon monoxide gas with the pressure set at 10 bar. Characterization of the product was carried out by using X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) at optimum temperature and mol ratio (140 °C and 3/1). Boron phase was seen in both XRD and FT-IR analysis. Also, SEM analysis was performed in order to observe morphological structure of elemental boron.  相似文献   

17.
The effect of nickel distribution and content in Ni-doped carbon nanospheres on hydrogen storage capacity under conditions of moderate temperature and pressure was studied. It was found that the nickel distribution, obtained by using different doping techniques and conditions, has a noticeable influence on hydrogen storage capacity. The samples with the most homogeneous nickel distribution, obtained by pre-oxidising the carbon nanospheres, displayed the highest storage capacity. In addition, storage capacity is influenced by the amount of nickel. It was found a higher storage capacity in samples containing 5 wt.% of Ni. This is due to the greater interactions between the nickel and the support that produce a higher activation of the solid through a spillover effect.  相似文献   

18.
The development of the real-time evaluation for the catalytic hydrogen evolution performance under a simple and convinient condiction is urgently needed, but still a great challenge. Herein, a platinum modulated WOx on Ag nanowires (Pt-WOx@Ag NWs) is developed as an optical-electrochemical catalyst to realize an in-situ intuitive evaluation for the hydrogen evolution performance, in which the color of as-prepared Pt-WOx@Ag NWs catalyst changes from the transparent to the deep blue with the increase of the applied potential. The real-time H2 evolution with an H2 turnover frequency (from 0 to 2.26 s?1 per site), optical transmittance (from 80.3% to 48.7% at the wavelength of 630 nm) and energy consumption (from 0 to 0.74 W h in 1 h) is established. The charge transfer and mass transport are greatly promoted by the three demensional Ag NWs conductive network and abundant active sites, which are provided by the platinum modulated WO3 on the Ag substrate. Density functional theory (DFT) calculations indicate that the modified WOx shows the preferred adsorption affinity toward H2O (ΔGH2O, ?0.17 eV), which reach a high coloration efficiency and optical modulation range for the electrochromic reaction. The Pt sites on WOx with a suitable H binding energy (ΔGH1, 0.38 eV) efficiently promote the H1 conversion and H2 release of water splitting. This work propose an intelligent hydrogen evolution indicator by real-time color change to boost the high-quality development of green hydrogen energy.  相似文献   

19.
The room temperature ageing process of tungsten oxide dihydrate grains (H2WO4·H2O) prepared by the methods of Zocher and Jacobson (Kolloidchem. Beih. 28 (1929) 167) and Freedman (J. Am. Chem. Soc. 81 (1959) 3834) has been studied. A comparison between these two preparation methods and the ageing characteristics is reported. Zocher and Jacobson-type grains, spindle like in shape, have a strong tendency to morphological conversion depending on the pH value of the surrounding aqueous solution. Under the same conditions the Freedman-type irregularly shaped particles preserve their morphology. Scanning electron microscopy and Fourier transform infrared spectroscopy studies have shown that this structural and morphological stability of Freedman-type grains can be altered by the presence of alkaline (Li+, Na+, K+) and NH4+ ions. A limited incorporation of cations into the tungstate structure was observed.  相似文献   

20.
This investigation analyses the effect of introducing a H2/CO mixture, upstream of a diesel particulate filter (DPF), in an attempt to support the regeneration process. The introduction of the mixture was achieved via various periodic strategies in an attempt to reduce the volume of mixture required while still maintaining proficient regeneration qualities. In addition to this, the effect of space velocity and engine load on the regeneration process was also investigated. The experimental data showed that the mixture addition supported the regeneration process by increasing the filter temperature via an exothermic reaction. The most beneficial spraying strategy introduced the mixture to the DPF every 20 s, with each injection event lasting for a period of 10 s. This strategy required 50% less mixture volume than the constant spray strategy but still induced similar regeneration capabilities. In addition to this, it was noted that a decrease in space velocity reduced the rate of temperature increase but improved the peak filter temperature resulting in increased regeneration proficiency. It was also noted that a reduction in engine load reduced the mean filter temperature but overall had minimal effect on the regeneration process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号