首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing the fuel mixing performance substantially improves the overall performance of the scramjet engine for a long-distance flight. In this paper, the influence of coaxial injector arrays of hydrogen/air multi-jet on the mixing performance of the fuel in supersonic crossflow is fully investigated. Our main goal is to examine the impacts of air and fuel coaxial injector on fuel distribution and penetration downstream of injectors in different operating conditions. In this study, fuel and air are simultaneously injected through coaxial multi-jet at sonic condition while of free-stream Mach number is 4. Computational Fluid Dynamic is applied for simulation of the transverse coaxial jet at supersonic crossflow. The effect of jet diameter with the same mass flow rate of air and hydrogen on fuel mixing is also investigated. The mixing efficiency of different jet spaces and pressures is also examined to obtain an optimum jet arrangement in the combustor chamber. Our study shows that the injection of the coaxial air/hydrogen jet noticeably improves mixing downstream by augmentation of fuel interaction with an air jet. Our results also show that fuel jet space of 7 Dj offers maximum fuel mixing by the formation of multi vortices with uniform strength.  相似文献   

2.
The technique of fuel injection in the combustion chamber is crucial for increasing the performance of hypersonic vehicles. This study tries to investigate the mechanism of fuel injection and distribution when fuel and air are injected through coaxial lobe injectors. The main attention of this work is to present the mechanism of fuel mixing of transverse jet injected from various lobe injectors. Comparison of coaxial gets (air and fuel jet) with equivalent simple jet (fuel without air jet) is done to achieve an efficient model for the combustion chamber. In this work, finite-volume is used to simulate and study of fuel injection performance of a transverse hydrogen jet in different lobe injectors. 3-D flow visualizations are done to reveal the mechanism of the fuel penetration and streamline pattern for introduced models. Strength of circulation and fuel mixing efficiency are also investigated in the present work for 2-, 3-, and 4-lobe nozzles. Our outcomes indicate that the mixing performance of coaxial air and fuel jet injected through the 3-lobe nozzle is about 25% better than other nozzle types. Our findings confirm that injection of air jet through the core of the lobe nozzle increases fuel mixing up to 200% at the combustion chamber.  相似文献   

3.
Development of the fuel injection system in combustion chamber is greatly important for the overall thrust efficiency of the high-speed vehicles. Current article developed a three-dimensional model to discover the reality of downstream ramp on fuel mixing of the multi-jet at Ma>1. FVM is hired to scrutinize the impact of injector types (3-lobe, circular and rectangular shape) on the mixing productivity of downstream ramp in combustion chamber. Besides, the effects of ramp angle on fuel mixing are also analysed. Fuel mixing mechanisms in the selected models are investigated by comparing the Ma contour and mixing zone. Comparisons of the circulation strength downstream of these models confirm that the 3-lobe nozzles is more efficient than other styles. Our comparison indicates that overall mixing productivity of the circular jet is more than other cases.  相似文献   

4.
The injection of the hydrogen is the main noteworthy stage for the advance of the supersonic engine. In our computational study, the incidence of the step condition in the upstream of the hydrogen multi-jet is investigated for the augmentation of the fuel distribution in downside of the fuel jets at Mach = 4. To perform our research, a 3-dimensional computational domain is taken to unveil the primary flow organization of the hydrogen jets and its interactions with the freestream for the advance of fuel mixing. This work comprehensively examined the impression of the jet pressure on the mixing value and flow structure. Besides, the three-dimensional outcome of the step on the pattern of the four multi-jets is compared with the single equivalent jet. According to our results, the existence of step improves the fuel mixing efficiency up to 30% close to of early jets. Our findings reveal that increasing the step height from 0.5 to 2 mm enhances the fuel mixing more than 15%.  相似文献   

5.
The fuel mixing process within the combustion chamber is a critical procedure for advance of scramjet engine. In current study, the influence of free stream angle on the fuel mixing process of multi jets was thoroughly investigated. This research attempts to applied computational technique to disclose the structure of multi-fuel jets when the supersonic air stream is not normal to the jet direction. The effect of both positive and negative supersonic free stream on the diffusion and penetration of multi-hydrogen jets is fully described. The attention of this research is the flow structure of the multi jets and their interaction in the presence of different free stream angle. Our results indicate that the positive free stream angle expands the mixing zone in the downstream while the negative angle of free stream limited jet distribution inside the combustor. Our results show that mixing efficiency increase approximately 50% when the angle of free stream augments from +20° to −20°. According to our findings, mixing efficiency surges up to 17% when the jet spaces are increased from 4Dj to 10 Dj.  相似文献   

6.
The performance of the engine highly depends on the fuel mixing process as a significant process to achieve efficient supersonic flight. Current article has attempted to release the effects of different annular lobe-injectors on fuel mixing when Ma>1. Three various annular jet nozzles are expansively investigated for injection of the sonic hydrogen jet at supersonic air crossflow with Mach-4. Comprehensive comparison of the jet structure of these models are performed through the evaluation of Mach and fuel concentration downstream of these lobe-injectors. Comparison of mixing efficiency also indicates that the nozzle with 3-lobe configuration has 25% more fuel mixing performance than other configurations. Our findings also show that mixing performance of annular lobe-injector is about 15% more than simple one for cases with 2-lobe and 4-lobe injectors.  相似文献   

7.
Efficient distribution of hydrogen gas inside the supersonic chamber is the main challenge for the increasing the performance of the supersonic vehicles. In this study, the new injection arrangements of the multi hydrogen jets within the cavity flameholder are comprehensively studied at a supersonic free stream. In order to investigate the effect of multi jets within a cavity flameholder, a three-dimensional model is developed and computational technique is used to simulate the flow and mixing zone inside this region. The influence of important parameters such as the pressure of jet and free stream Mach number is investigated to illustrate the flow pattern and evaluate the mixing rate in the supersonic combustion chamber. Obtained results show that the rise of the total pressure of hydrogen jet enlarges the ignition zone within the cavity. Furthermore, the increase of free stream Mach number limited the mixing rate and jet interaction. Our findings confirm that fuel jet with PR = 0.5 significantly enhances the performance of the cavity flameholder inside the scramjet.  相似文献   

8.
The spreading of hydrogen jet within the combustion chamber is extremely important for the fuel consumption and enactment of scramjet engines. In this article, a numerical method is used to simulate the influence of wavy wall on distribution of the hydrogen cross flow jet in the downstream of the injectors. To examine the main role of wavy surface on the fuel distribution, a 3-D model is selected with an appropriate grid to detect the primary interaction of the hydrogen fuel jet with the deflected supersonic free stream. Code was developed to solve the Navier-stokes equation with energy and species mass transport equations. This study compares the effect of the amplitude of the wavy upstream wall on the main flow structure and hydrogen fuel distribution within the confined channel. The effects of hydrogen jet pressure on the main stream are also studied. Our findings display that the mixing rate of fuel inside the combustor rises about 35% when high amplitude surface wall is applied in the upstream of jet.  相似文献   

9.
In this article, numerical simulations were done to study the influence of the various hydrogen injections on the mixing rate in the cavity flameholder of the scramjet. This study tried to present the main effective parameters on the flow feature and distribution of the hydrogen jet within a cavity in supersonic free stream domain. In order to simulate the cavity flameholder with micro air/fuel jets, a three-dimensional model is chosen and computational fluid dynamic approach is used for the simulations. The effect of significant parameters is studied by using the Reynolds-averaged Navier–Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. The effect of horizontal and vertical fuel injection is comprehensively studied. Moreover, the characteristics of the mixing in various free stream velocities (M = 1.2, 2.2 and 3.2) are examined and the effects of micro air jet on the size of ignition domain for preserving flame holder are investigated. Results show that the increase of free stream Mach number significantly enhances the mixing of horizontal fuel injection in the cavity. The obtained results reveal that the injection of micro air jets enhances the mixing rate in low Mach number (M = 1.2). Our findings also show that vertical hydrogen injection considerably increases the mixing zone within the cavity and the mixing rate significantly improves by rising free stream velocity.  相似文献   

10.
The enactment of the fuel mixing structure is crucial for the advance of supersonic vehicles. All-inclusive efforts have been done to disclose the impacts of different parameters on instrument of the fuel combination with air within the combustion chamber. In the present work, comprehensive computational investigations have been done to explore the importance of oblique ramp upstream on the fuel mixing process of hydrogen multi-jets at supersonic cross airflow. The primary attention of the current study is to compare the role of interaction of air and fuel by the existence of an oblique ramp upstream of four cross jets. Flow analysis is also done to unveil the main difference of convergent and divergence ramps located upstream of each injector. For simulation of the proposed models, Computational Fluid Dynamics (CFD) is employed to resolve RANS equations with the SST turbulence model in high-speed free stream. The main significant factors i.e. mixing efficiency and circulation factor are also compared in our work for comparison of the flow parameters and mixing concepts. According to our investigations, the presence of the upstream oblique jet meaningfully enhances the fuel mixing as flow moves downstream of injectors. The outcomes also showed that productivity of the divergent ramp is higher than that of the convergent one due to high jet diffusion in the depth of the domain by the creation of a strong horseshoe vortex.  相似文献   

11.
Fuel mixing inside the supersonic combustion chamber is a significant process for development of modern scramjets. In this article, computational fluid dynamic (CFD) approach is applied to investigate the effect of various fuel injections on the mixing rate inside the supersonic combustion chamber. The mixing of hydrogen jets with four different arrangements inside the cavity flame holder is comprehensively studied. In order to examine the effect of multi jets within a cavity flameholder, a three-dimensional model is established and Navier-stocks equations are solved to simulate the flow and mixing zone inside a cavity region. Obtained results show that the injection of hydrogen jet from the bottom of cavity flame holder considerable enhances the ignition zone within the cavity. Moreover, the backward fuel injection is more superior to forward fuel injection since low-pressure vortex could significantly distribute the fuel and enlarge the mixing zone inside the cavity flame holder.  相似文献   

12.
Enhancement of the mixing inside the combustor is a significant process for increasing the efficiency of the scramjet. This work applied the computational method for the investigation of the depth of the cavity on the flow feature of the multi hydrogen jet in the supersonic crossflow. The main focus of this research is to evaluate the depth of the cavity on the mixing rate of the hydrogen jets inside the combustion chamber. CFD method with the SST turbulence technique is applied for the simulation of the fluid flow inside the domain. The impact of the depth of the cavity, the pressure of the fuel jet and the number of the jet are comprehensively explained in this study. Our findings show that the rising of the cavity enhances the mixing inside the domain due to more fuel distribution along the spanwise direction. Our results clearly demonstrate that replacing the single jet with 8 equivalent multi jets increases the mixing rate of more than 45% in the vicinity of the jet injection. Attained results revealed that increasing the jet space develops the mixing in far downstream. Obtained results also show that mixing intensifies 15% when jet space of 8 microjets is increased from 4 dj to 10 dj.  相似文献   

13.
Cavity flameholder is known as a promising technique to improve fuel mixing within the combustion chamber. This article studied the influences of the strut angle on the mixing performance of multi jets released inside the cavity flameholder. Finding the optimum jet configuration is done to promote the mixing performance of fuel through chamber when strut is applied in the upstream of the cavity flameholder. The impact of strut angle, fuel jet direction, and free-stream Mach number on the performance of three multi jets inside the chamber is disclosed in our research. For the simulation of our model, turbulent SST model is employed to obtain fuel distribution through the cavity. Our findings indicate that the counter jet is more operative in mixing of the fuel than co-jet since the main circulation is close to counter-jet, and fuel could efficiently distribute by the main circulation.  相似文献   

14.
Hydrogen-air mixing in coaxial jets was investigated using a one-equation model to simulate the velocity scale of turbulence. Combining the density fluctuation with other fluctuating components to define the eddy exchange coefficients, a set of empirical constants was derived for the closure of the partial differential equations that govern the mixing process of heterogeneous fluids. Comparing the numerical results with available experimental data, good agreements were obtained for distributions in velocity, shear stress, enthalpy, and species concentration along both axial and radial directions. The density fluctuation in hydrogen-air mixing, which is very difficult to measure, can be treated by the same method for compressible flows in a homogeneous fluid, provided that the kinetic energy of turbulence is considered simultaneously with all other governing equations.  相似文献   

15.
A study of a coaxial double pipe jet at different temperatures was carried out at mean inner pipe jet to annulus jet velocity ratios from 1.0 to 3.0. The radial distributions of the local mean velocities and the fluctuating intensities of velocity (turbulence intensities) in isothermal air jets were measured at various axial distances of up to twenty times the pipe diameter downstream. Measurements were also made of the radial distributions of the local mean temperatures and the fluctuating intensities of temperature in non-isothermal air jets. The velocity profiles in relation to those of temperature are described in detail in the developing region of coaxial jets. Moreover, the fluctuating velocity intensities are compared with those of temperature. © 1998 Scripta Technica, Heat Trans. Jpn. Res., 27(6): 431–446, 1998  相似文献   

16.
The effects of incident shock wave on mixing and flame holding of hydrogen in supersonic airflow have been studied numerically. The considered flow field was including of a sonic transverse hydrogen jet injected in a supersonic air stream. Under-expanded hydrogen jet was injected from a slot injector. Flow structure and fuel/air mixing mechanism were investigated numerically. Three-dimensional Navier–Stokes equations were solved along with SST k-ω turbulence model using OpenFOAM CFD toolbox. Impact of intersection point of incident shock and fuel jet on the flame stability was studied. According to the results, without oblique shock, mixing occurs at a low rate. When the intersection of incident shock and the lower surface is at upstream of the injection slot; no significant change occurs in the structure of the flow field at downstream. However when the intersection moves toward downstream of injection slot; dimensions of the recirculation zone and hydrogen-air mixing rate increase simultaneously. Consequently, an enhanced mixing zone occurs downstream of the injection slot which leads to flame-holding.  相似文献   

17.
The present study is focused on the analysis of non-premixed combustion in high-velocity (supersonic) flows. The computations make use of a large eddy simulation (LES) model, which has been recently introduced to address combustion in high Reynolds number turbulent flows featuring moderate Damköhler values. We expect that the corresponding closure is able to account for the specificities encountered in high Mach number turbulent reactive flows featuring chemical reaction time scales with the same order of magnitude as flow time scales. The model takes finite-rate chemistry and micro-mixing effects into account within the framework of the partially stirred reactor (PaSR) concept, it is hereafter denoted by U-PaSR (unsteady partially stirred reactor). (i) In a first step of the present investigation, the capabilities of the U-PaSR closure hence proposed are evaluated through a detailed comparison performed between numerical results and the data obtained from an experimental study devoted to non-premixed combustion in supersonic co-flowing jets of hydrogen and vitiated air. The simulated test case corresponds to a well-documented experimental database that includes Raman scattering and laser-induced pre-dissociative fluorescence measurements. The comparisons performed between computational results and experimental data establish that the physical processes are well-described by the performed simulation. (ii) In a second step of this study, the flame structure and associated stabilization zone are analysed in the light of numerical simulation results. The post-processing to the computational results indeed confirms the importance of self-ignition processes, as well as the relevance of diagnostic tools recently introduced by Boivin et al. [1,2]. Considering the stabilization zone, it also emphasizes the essential importance of the pressure dynamics associated with the discharge of compressible coflowing jets into the atmosphere – an importance that was not so clearly evidenced from previous numerical simulations conducted on the same experimental benchmark.  相似文献   

18.
Highly under-expanded hydrogen jets releasing in quiescent air atmosphere are studied using highly resolved numerical simulations accounting for complex multicomponent molecular transport phenomena. In a first step of the analysis, the main overall features of the hydrogen jet structure are described and compared to those of the classical under-expanded air jet at the same nozzle pressure ratio (NPR). Even if the global flow topology remains quite similar in both cases (i.e., hydrogen and air discharges), the modification of both mean density and mean velocity gradients leads to different relative energy levels for each velocity component. The corresponding change of fluid properties mainly leads to an enhanced mixing at the jet periphery. In comparison to the air case, the turbulence development within the internal part of the under-expanded hydrogen jet surrounding the subsonic core also yields a different structure. While a significantly higher peak of streamwise turbulent stress is observed downstream of the reflected shock, the vorticity dynamics is dampened by viscous diffusion and velocity divergence (i.e., volumetric expansion) contributions. Then, the performance of the simplified Hirschfelder and Curtiss approximation of the multicomponent molecular diffusion phenomena is evaluated with respect to the detailed multicomponent transport representation, as deduced from the EGLIB library. The detailed representation of molecular phenomena is shown to have a significant influence on the estimated local levels of hydrogen mass flux, leading to a non-negligible alteration of the global jet structure.  相似文献   

19.
Increasing the fuel mixing performance in the combustor of scramjet substantially improves the overall efficiency of the scramjet engine. In this article, computational fluid dynamic is used to study the impacts of hydrogen jets injection through the backward-facing multi-steps on the fuel distribution and mixing zone at the supersonic air stream of Mach = 4. This study also analyzes the jet flow feature and circulation of jets in different sections of the combustor at downstream of the multi-injectors. Reynolds average Navier-Stocks equations are solved with SST turbulence model for achieving a precise and acceptable solution. The effects of step height on the jet features are also examined. According to circulation evaluation, low jet total pressure (pressure ratio = 0.1) and high step depth (step depth = 1 mm) is the optimum condition for achieving high circulation value. Our investigations show that the mixing efficiency of the hydrogen multijets improves up to 15% when the step height increases from 0.5 mm to 1 mm.  相似文献   

20.
In this numerical study, the influence of chemistry models on the predictions of supersonic combustion in a model combustor is investigated. To this end, 3D, compressible, turbulent, reacting flow calculations with a detailed chemistry model (with 37 reactions and 9 species) and the Spalart-Allmaras turbulence model have been carried out. These results are compared with earlier results obtained using single step chemistry. Hydrogen is used as the fuel and three fuel injection schemes, namely, strut, staged (i.e., strut and wall) and wall injection, are considered to evaluate the impact of the chemistry models on the flow field predictions. Predictions of the mass fractions of major species, minor species, dimensionless stagnation temperature, dimensionless static pressure rise and thrust percentage along the combustor length are presented and discussed. Overall performance metrics such as mixing efficiency and combustion efficiency are used to draw inferences on the nature (whether mixing- or kinetic-controlled) and the completeness of the combustion process. The predicted values of the dimensionless wall static pressure are compared with experimental data reported in the literature. The calculations show that multi step chemistry predicts higher and more wide spread heat release than what is predicted by single step chemistry. In addition, it is also shown that multi step chemistry predicts intricate details of the combustion process such as the ignition distance and induction distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号