首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The behavior of the discrete spectrum of the Schrödinger operator - Δ -V is determined to a large extent by the behavior of the corresponding heat kernel P(t; x,y) as t → 0 and t→ ∞. If this behavior is power-like, i.e.,
$\left\| {P(t; \cdot , \cdot )} \right\|_{L^\infty } = O(t^{ - \delta /2} ),t \to 0,\left\| {P(t; \cdot , \cdot )} \right\|_{L^\infty } = O(t^{ - D/2} ),t \to \infty ,$
then it is natural to call the exponents δ and D the local dimension and the dimension at infinity, respectively. The character of spectral estimates depends on a relation between these dimensions. The case where δ < D, which has been insufficiently studied, is analyzed. Applications to operators on combinatorial and metric graphs are considered.
  相似文献   

2.
We prove the conditional exponential stability of the zero solution of the nonlinear differential system
$$\dot y = A(t)y + f(t,y),{\mathbf{ }}y \in R^n ,{\mathbf{ }}t \geqslant 0,$$
with L p -dichotomous linear Coppel-Conti approximation .x = A(t)x whose principal solution matrix X A (t), X A (0) = E, satisfies the condition
$$\mathop \smallint \limits_0^t \left\| {X_A (t)P_1 X_A^{ - 1} (\tau )} \right\|^p d\tau + \mathop \smallint \limits_t^{ + \infty } \left\| {X_A (t)P_2 X_A^{ - 1} (\tau )} \right\|^p d\tau \leqslant C_p (A) < + \infty ,{\mathbf{ }}p \geqslant 1,{\mathbf{ }}t \geqslant 0,$$
where P 1 and P 2 are complementary projections of rank k ∈ {1, …, n ? 1} and rank n ? k, respectively, and with a higher-order infinitesimal perturbation f:[0, ∞) × UR n that is piecewise continuous in t ≥ 0 and continuous in y in some neighborhood U of the origin.
  相似文献   

3.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

4.
Let f(z) be a finite order meromorphic function and let c∈C\{0} be a constant.If f(z)has a Borel exceptional value a∈C,it is proved that max{τ(f(z)),τ(△_cf(z))}=max{τ(f(z)),τ(f(z+c))}=max{τ(△_cf(z)),τ(f(z+c))}=σ(f(z)).If f(z) has a Borel exceptional value b∈(C\{0})∪{∞},it is proved that max{τ(f(z)),τ(△cf(z)/f(z))}=max{τ(△cf(z)/f(z)),τ(f(z+c))}=σ(f(z)) unless f(z) takes a special form.Here τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z),and σ(g(z)) denotes the order of growth of g(z).  相似文献   

5.
Let X be a Banach space with a weak uniform normal structure and C a non–empty convexweakly compact subset of X. Under some suitable restriction, we prove that every asymptoticallyregular semigroup T = {T(t) : t ∈¸ S} of selfmappings on C satisfying
${\mathop {\lim \inf }\limits_{S \mathrel\backepsilon t \to \infty } }{\left| {{\left\| {T(t)} \right\|}} \right|} < {\text{WCS}}(X)$
has a common fixed point, where WCS(X) is the weakly convergent sequence coefficient of X, and\({\left| {{\left\| {T(t)} \right\|}} \right|}\) is the exact Lipschitz constant of T(t).  相似文献   

6.
Let \( E \subset \mathbb{C} \) be a compact set, \( g:\mathbb{C} \to \mathbb{C} \) be a K-quasiconformal map, and let 0 < t < 2. Let \( {\mathcal{H}^t} \) denote t-dimensional Hausdorff measure. Then
$ {\mathcal{H}^t}(E) = 0\quad \Rightarrow \quad {\mathcal{H}^{t'}}\left( {gE} \right) = 0,\quad t' = \frac{{2Kt}}{{2 + \left( {K - 1} \right)t}}. $
This is a refinement of a set of inequalities on the distortion of Hausdorff dimensions by quasiconformal maps proved by K. Astala in [2] and answers in the positive a conjecture of K. Astala in op. cit.  相似文献   

7.
We study the break-down mechanism of smooth solution for the gravity water-wave equation of infinite depth. It is proved that if the mean curvature κ of the free surface Σt, the trace(V, B) of the velocity at the free surface, and the outer normal derivative ?P/?n of the pressure P satisfy sup t∈[0,T]||κ(t)||~(Lp∩L~2+∫~T_0||(▽V, ▽B)(t)||~6_(L∞)dt+∞,inf (t,x,y)∈[0,T]×Σ_t-?P/?n(t, x, y)≥c0,for some p 2d and c_0 0, then the solution can be extended after t = T.  相似文献   

8.
A Shilla graph is defined as a distance-regular graph of diameter 3 with second eigen-value θ1 equal to a3. For a Shilla graph, let us put a = a3 and b = k/a. It is proved in this paper that a Shilla graph with b2 = c2 and noninteger eigenvalues has the following intersection array:
$$\left\{ {\frac{{{b^2}\left( {b - 1} \right)}}{2},\frac{{\left( {b - 1} \right)\left( {{b^2} - b + 2} \right)}}{2},\frac{{b\left( {b - 1} \right)}}{4};1,\frac{{b\left( {b - 1} \right)}}{4},\frac{{b{{\left( {b - 1} \right)}^2}}}{2}} \right\}$$
If Γ is a Q-polynomial Shilla graph with b2 = c2 and b = 2r, then the graph Γ has intersection array
$$\left\{ {2tr\left( {2r + 1} \right),\left( {2r + 1} \right)\left( {2rt + t + 1} \right),r\left( {r + t} \right);1,r\left( {r + t} \right),t\left( {4{r^2} - 1} \right)} \right\}$$
and, for any vertex u in Γ, the subgraph Γ3(u) is an antipodal distance-regular graph with intersection array
$$\left\{ {t\left( {2r + 1} \right),\left( {2r - 1} \right)\left( {t + 1} \right),1;1,t + 1,t\left( {2r + 1} \right)} \right\}$$
The Shilla graphs with b2 = c2 and b = 4 are also classified in the paper.
  相似文献   

9.
We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation
$$\dot x\left( t \right) = \mathcal{L}\left( t \right)x\left( t \right) + f\left( {t,x\left( t \right)} \right),t \in \mathbb{R}$$
(P)
where {?(t): t ∈ R} is a family of linear operators from a Banach space E into itself and f: R × EE. By L(E) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0, we let C([?d, 0],E) be the Banach space of continuous functions from [?d, 0] into E and f d : [a, b] × C([?d, 0],E) → E. Let \(\hat {\mathcal{L}}:[a,b] \to L(E)\) be a strongly measurable and Bochner integrable operator on [a, b] and for t ∈ [a, b] define τ t x(s) = x(t + s) for each s ∈ [?d, 0]. We prove that, under certain conditions, the differential equation with delay
$$\dot x\left( t \right) = \hat {\mathcal{L}}\left( t \right)x\left( t \right) + {f^d}\left( {t,{\tau _t}x} \right),ift \in \left[ {a,b} \right],$$
(Q)
has at least one weak solution and, under suitable assumptions, the differential equation (Q) has a solution. Next, under a generalization of the compactness assumptions, we show that the problem (Q) has a solution too.
  相似文献   

10.
We consider the stochastic differential equation (SDE) of the form
$$\begin{array}{@{}rcl@{}} \left\{\begin{array}{rcl} dX^ x(t) &=& \sigma(X(t-)) dL(t) \\ X^ x(0)&=&x,\quad x\in{\mathbb{R}}^ d, \end{array}\right. \end{array} $$
where \(\sigma :{\mathbb {R}}^ d\to {\mathbb {R}}^ d\) is globally Lipschitz continuous and L={L(t):t≥0} is a Lévy process. Under this condition on σ it is well known that the above problem has a unique solution X. Let \((\mathcal {P}_{t})_{t\ge 0}\) be the Markovian semigroup associated to X defined by \(\left ({\mathcal {P}}_{t} f\right ) (x) := \mathbb {E} \left [ f(X^ x(t))\right ]\), t≥0, \(x\in {\mathbb {R}}^{d}\), \(f\in \mathcal {B}_{b}({\mathbb {R}}^{d})\). Let B be a pseudo–differential operator characterized by its symbol q. Fix \(\rho \in \mathbb {R}\). In this article we investigate under which conditions on σ, L and q there exist two constants γ>0 and C>0 such that
$$\left| B {\mathcal{P}}_{t} u \right|_{H^{\rho}_{2}} \le C \, t^{-\gamma} \,\left| u \right|_{H^{\rho}_{2}}, \quad \forall u \in {H^{\rho}_{2}}(\mathbb{R}^{d} ),\, t>0. $$
  相似文献   

11.
The aim of this paper is to establish an Ambrosetti–Proditype result for the problem
$$\left\{ \begin{array}{ll}-\Delta{u} = g(x, u,\nabla{u}) + t\varphi \quad {\rm in}\, \Omega,\\ \frac{\partial{u}}{\partial\eta} = 0 \qquad\qquad\qquad\quad {\rm on}\, \partial\Omega ;\end{array} \right.$$
i.e., under appropriate conditions, we will show that there exists a constant t 0 such that the problem above has no solution if tt 0, at least a solution if tt 0 and at least two solutions if tt 0. The proof is based on a combination of upper and lower solutions method and the Leray–Schauder degree.
  相似文献   

12.
We present a variation-of-constants formula for functional differential equations of the form
$$\dot y = \mathcal{L}\left( t \right)y_t + f\left( {y_t,t} \right),\;y_{t_0}= \varphi $$
, where \(\mathcal{L}\) is a bounded linear operator and φ is a regulated function. Unlike the result by G. Shanholt (1972), where the functions involved are continuous, the novelty here is that the application t \(t \mapsto f\left( {y_t,t} \right)\) is Kurzweil integrable with t in an interval of ?, for each regulated function y. This means that t \(t \mapsto f\left( {y_t,t} \right)\) may admit not only many discontinuities, but it can also be highly oscillating and yet, we are able to obtain a variation-of-constants formula. Our main goal is achieved via theory of generalized ordinary differential equations introduced by J.Kurzweil (1957). As a matter of fact, we establish a variation-of-constants formula for general linear generalized ordinary differential equations in Banach spaces where the functions involved are Kurzweil integrable. We start by establishing a relation between the solutions of the Cauchy problem for a linear generalized ODE of type
$$\frac{{dx}}{{d\tau }} = D\left[ {A\left( t \right)x} \right],x\left( {{t_0}} \right) = \tilde x$$
and the solutions of the perturbed Cauchy problem
$$\frac{{dx}}{{d\tau }} = D\left[ {A\left( t \right)x + F\left( {x,t} \right)} \right],x\left( {{t_0}} \right) = \tilde x$$
Then we prove that there exists a one-to-one correspondence between a certain class of linear generalized ODE and the Cauchy problem for a linear functional differential equations of the form
$$\dot y = \mathcal{L}\left( t \right)y_t,\;y_{t_0} = \varphi$$
, where \(\mathcal{L}\) is a bounded linear operator and φ is a regulated function. The main result comes as a consequence of such results. Finally, because of the extent of generalized ODEs, we are also able to describe the variation-of-constants formula for both impulsive FDEs and measure neutral FDEs.
  相似文献   

13.
In this paper, we consider the existence of positive solutions of second-order periodic boundary value problem
$$u'' + {\left( {\frac{1}{2} + \varepsilon } \right)^2}u = \lambda g\left( t \right)f\left( u \right),t \in \left[ {0,2\pi } \right],u\left( 0 \right) = u\left( {2\pi } \right),u'\left( 0 \right) = u'\left( {2\pi } \right)$$
, where 0 < ε < 1/2, g: [0, 2π] → ? is continuous, f: [0,∞) → ? is continuous and λ > 0 is a parameter.
  相似文献   

14.
We calculate the sharp bounds for some q-analysis variants of Hausdorff type inequalities of the form
$$\int_0^{ + \infty } {{{\left( {\int_0^{ + \infty } {\frac{{\phi \left( t \right)}}{t}f\left( {\frac{x}{t}} \right){d_q}t} } \right)}^p}{d_q}x} \leqslant {C_\phi }\int_0^b {{f^p}\left( t \right)} {d_q}t$$
. As applications, we obtain several sharp q-analysis inequalities of the classical positive integral operators, including the Hardy operator and its adjoint operator, the Hilbert operator, and the Hardy-Littlewood-Pólya operator.
  相似文献   

15.
In this paper, we investigate the existence results for fractional differential equations of the form
$$\begin{aligned} {\left\{ \begin{array}{ll} D_{c}^{q}x(t)=f(t,x(t)) \quad t\in [0, T)\left( 0<T\le \infty \right) , \quad q \in (1,2),\\ x(0)=a_{0},\quad x^{'}(0)=a_{1}, \end{array}\right. } \end{aligned}$$
(0.1)
and
$$\begin{aligned} {\left\{ \begin{array}{ll} D_{c}^{q}x(t)=f(t,x(t)) \quad t\in [0, T), \quad q \in (0,1),\\ x(0)=a_{0}, \end{array}\right. } \end{aligned}$$
(0.2)
where \(D_{c}^{q}\) is the Caputo fractional derivative. We prove the above equations have solutions in C[0, T). Particularly, we present the existence and uniqueness results for the above equations on \([0,+\infty )\).
  相似文献   

16.
In this paper, we study the existence of positive entire large and bounded radial positive solutions for the following nonlinear system
$$\left\{ {\begin{array}{*{20}c}{S_{k_1 } \left( {\lambda \left( {D^2 u_1 } \right)} \right) + a_1 \left( {\left| x \right|} \right)\left| {\nabla u_1 } \right|^{k_1 } = p_1 \left( {\left| x \right|} \right)f_1 \left( {u_2 } \right)} & {for x \in \mathbb{R}^N ,} \\{S_{k_2 } \left( {\lambda \left( {D^2 u_2 } \right)} \right) + a_2 \left( {\left| x \right|} \right)\left| {\nabla u_2 } \right|^{k_2 } = p_2 \left( {\left| x \right|} \right)f_2 \left( {u_1 } \right)} & {for x \in \mathbb{R}^N .} \\\end{array} } \right.$$
Here \({S_{{k_i}}}\left( {\lambda \left( {{D^2}{u_i}} \right)} \right)\) is the k i -Hessian operator, a 1, p 1, f 1, a 2, p 2 and f 2 are continuous functions.
  相似文献   

17.
The singular boundary-value problem
$ \left\{ {\begin{array}{*{20}{c}} {{u^{\prime\prime}} + g\left( {t,u,{u^{\prime}}} \right) = 0\quad {\text{for}}\quad t \in \left( {0,1} \right),} \hfill \\ {u(0) = u(1) = 0} \hfill \\ \end{array} } \right. $
is studied. The singularity may appear at u?=?0, and the function g may change sign. An existence theorem for solutions to the above boundary-value problem is proposed, and it is proved via the method of upper and lower solutions.
  相似文献   

18.
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:?????(-?)~mu(x)=u~p(x)/|x|~s,in R_+~n,u(x)=-?u(x)=…=(-?)~(m-1)u(x)=0,on ?R_+~n,(0.1)where m is any positive integer satisfying 02mn.We first prove that the positive solutions of(0.1)are super polyharmonic,i.e.,(-?)~iu0,i=0,1,...,m-1.(0.2) For α=2m,applying this important property,we establish the equivalence between (0.1) and the integral equation u(x)=c_n∫R_+~n(1/|x-y|~(n-α)-1/|x~*-y|~(n-α))u~p(y)/|y|~sdy,(0.3) where x~*=(x1,...,x_(n-1),-x_n) is the reflection of the point x about the plane R~(n-1).Then,we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of(0.3),in whichαcan be any real number between 0 and n.By some Pohozaev type identities in integral forms,we prove a Liouville type theorem—the non-existence of positive solutions for(0.1).  相似文献   

19.
The main objective of this paper is to study some qualitative behavior of the solutions of the two difference equations
$ {x_{n + 1}} = {{{a{x_n} - b{x_{n - k}}}} \left/ {{\left( {c{x_n} - d{x_{n - k}}} \right)}} \right.}\quad n = 0,\,1,\,2, \ldots, $
and
$ {x_{n + 1}} = {{{a{x_{n - k}} + b{x_n}}} \left/ {{\left( {c{x_n} - d{x_{n - k}}} \right)}} \right.}\quad n = 0,\,1,\,2, \ldots, $
where the initial conditions x???k, ?, x???1, x0 are arbitrary positive real numbers and the coefficients a, b, c, and d are positive constants, while k is a positive integer number.
  相似文献   

20.
In this paper, we improve the previous results of the authors [G. Lü and H. Tang, On some results of Hua in short intervals, Lith. Math. J., 50(1):54–70, 2010] by proving that each sufficiently large integer N satisfying some congruence conditions can be written as
$ \left\{ {\begin{array}{*{20}{c}} {N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + {p^k},} \hfill \\ {\left| {{p_j} - \sqrt {{\frac{N}{5}}} } \right| \leqslant U,\quad \left| {p - {{\left( {\frac{N}{5}} \right)}^{\frac{1}{k}}}} \right| \leqslant U\,{N^{ - \frac{1}{2} + \frac{1}{k}}},\quad j = 1,\,2,\,\,3,\,4,} \hfill \\ \end{array} } \right. $
where U = N 1/2?η+ε with \( \eta = \frac{1}{{2k\left( {{K^2} + 1} \right)}} \) and K = 2k ?1, k ? 2.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号