首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the historical records of the annual increase in the workforce (men older than 16 years of age), the annual new taxed cropland in the Shengjing area (Northeast China), the extreme climate events in North China, and related management policies in Northeast China during 1661―1680, a case study has been conducted to investigate the relationship between the extreme climate events in North China and the migration to Northeast China for cultivation. This study has found that the migration to Northeast China for cultivation from 1661 to 1680 was a response to the drought events that occurred in North China. The upsurge of migration, which occurred in 1665―1680, was a response to the drought period during 1664―1680 in North China while the fewer disasters period in Northeast China. There were three migratory peaks during the upsurge of migration, which corresponded to the three drought events. The peaks of migration, however, often lagged behind the drought events about 1―2 years. The encourag-ing-migration policy, which was adopted to encourage cultivation in Northeast China, did not produce much migration into the region in the early Qing Dynasty. It did, however, provide a policy background, which ensured more than 10000 migrants per year to Northeast China when North China suffered from drought/flood disasters. As a response to the highest peak of migration induced by the severe droughts in North China during 1664―1667, a prohibiting-migration policy restricted further migration to Northeast China was carried out in 1668. Although the prohibiting-migration policy could not entirely stop the migrants fleeing from famine in North China to Northeast China, the migrants and cultivation were significantly reduced under the policy. The frequent changes of the policy on the years when taxation started after the land was cultivated were also related to climate events. The extreme climate events in North China, migration to Northeast China for cultivation, and the related management poli-cies showed an impact-response chain, which reflected the interaction among extreme climate events, human behavior, and policies.  相似文献   

2.
Groundwater, an essential resource, is likely to change with global warming because of changes in the CO2 levels, temperature and precipitation. Here, we combine water isotope geochemistry with climate modelling to examine future groundwater recharge in southwest Ohio, USA. We first establish the stable isotope profiles of oxygen and deuterium in precipitation and groundwater. We then use an isotope mass balance model to determine seasonal groundwater recharge from precipitation. Climate model output is used to project future changes in precipitation and its seasonal distribution under medium and high climate change scenarios. Finally, these results are combined to examine future changes in groundwater recharge. We find that 76% of the groundwater recharge occurs in the cool season. Climate models project precipitation increase in the cool season and decrease in the warm season. The total groundwater recharge is expected to increase by 3.2% (8.8%) under the medium (high) climate change scenarios.  相似文献   

3.
Min Xu  Hao Wu  Shichang Kang 《水文研究》2018,32(1):126-145
The Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.  相似文献   

4.
地震相干偏移与数据自参照偏移的关系   总被引:2,自引:3,他引:2       下载免费PDF全文
地震相干偏移和数据自参照偏移是最近几年发展起来的地震成像新方法,并且已在地震勘探研究领域开始应用.该方法在VSP(垂直地震剖面)中的应用尤其值得关注,因为它部分地解决了一些在地面反射地震方法中难以解决的问题.地震相干偏移是用地震数据的互相关处理后的数据进行偏移,而数据自参照偏移则不必在偏移前对数据进行互相关处理,而是通过记录数据中的两个不同部分波场的延拓来互相参照进行偏移.二者的优点都是在偏移运算中可以不考虑原始震源位置、激发时间以及地震波初始传播路径.本文从偏移成像的理论出发分析了这两类算法,发现二者在成像原理上是一致的.本文还通过一个二维VSP多次波偏移的数值模拟实验,比较和归纳了这两类算法在实际应用中的特点.  相似文献   

5.
Tlatov(2007)研究认为,太阳活动和太阳磁场变化的22年周期,可能与太阳自转速度的变化有关.可是关于太阳自转速度为什么呈现出22年的变化周期,尚未见到有说服力的解释.本文通过对行星会合指数、行星系质心绕太阳系质心的运动、太阳绕太阳系质心运动以及太阳自转角动量变化的分析,发现行星系统的会合与相互背离,导致了太阳系质心与太阳质心的背离和靠近,从而引发太阳绕太阳系质心旋转角动量与太阳自转角动量的分离与叠加.由此认为,这两种角动量间的转换是太阳自转角速度呈现22年周期性变化的原因.太阳自转速度极小值对应于行星会合指数极大值;而太阳自转速度极大值对应行星会合指数极小值.其中平均11年左右为太阳自转加速期,另外11年则为太阳自转减速期.这一发现,可能为太阳活动与太阳磁场变化22年周期的成因机制的解释提供一个新的线索.  相似文献   

6.
Abstract

Field observations and geodetic measurements suggest that in the Karakoram Mountains, glaciers are either stable or have expanded since 1990, in sharp contrast to glacier retreats that are prevalently observed in the Himalayas and adjoining high-altitude terrains of central Asia. Decreased discharge in the rivers originating from this region is cited as a supporting evidence for this somewhat anomalous phenomenon. Here, we show that river discharge during the melting season of the glaciers in the eastern and western Karakoram, respectively, exhibits rising and falling trends. We have implemented a statistical procedure involving non-parametric tests combined with a benchmark smoothing technique that has proven to be a powerful method for separating the stochastic component from the trend component in a time series. Precipitation patterns determined from ERA-40 and GPCP data indicate that summer-monsoonal precipitation has increased over the Karakoram Mountains in recent decades. Increasing flows in June and July in the eastern Karakoram are due to an increase in summer-monsoonal precipitation. The rising trend of August discharge is due to an increase in the loss of glacier storage at an approximate average rate of 0.186–0.217 mm d-1 year-1 during the period 1973–2010. Moreover, this rate is higher than the rate of increase in monsoonal snowfall during the months of August and September. Therefore, most plausibly, glacier mass balance in the eastern Karakoram is negative. In the western Karakoram, river flows show declining trends for all summer months for the period 1966–2010, corresponding to a rate of increase of glacier storage by approximately 0.552–0.644 mm d-1 year-1, which is also higher than the rate of increase in summer-monsoonal precipitation. The gain of the cryospheric mass in the western Karakoram is in the form of increased thickness of the glaciers and perennial snowpacks instead of areal expansion. This investigation shows two contrasting patterns of trends of river flows that signify both negative and positive mass balance of the Karakoram glaciers. Trends of river flows are spatially and temporally integrated responses of a watershed to changing climate and thereby are important signals of the conditions of the cryospheric component of a watershed where it is highly significant. However, they cannot unequivocally provide indications of the state and fate of the glaciers in the complex hydrometeorological setting of the Karakoram. Extreme caution and care must be exercised in interpreting trends of river discharge in conjunction with climatic data.  相似文献   

7.
Two reaches of Aguapeí River, a left‐bank tributary of the Paraná River in western São Paulo state, Brazil, were studied with the objective of assessing the role of bend curvature on channel migration in this wet‐tropical system and examining if land‐use changes or ENSO (El Niño Southern Oscillation) driven climate anomalies over nearly half a century have changed migration behaviour and planform geometry. Meander‐bend migration rates and morphometric parameters including meander‐bend curvature, sinuosity, meander wavelength and channel width, were measured and the frequency of bend cutoffs was analysed in order to determine the rate of change of channel adjustment over a 48 year period to 2010. Results show that maximum average channel migration rates occur in bends with curvatures of about 2–3 rc/w, similar to other previously studied temperate and subarctic freely meandering rivers although not as pronounced and with a tendency to favour tighter curvature. From 1962 to 2010 the Aguapeí River has undergone a significant reduction in sinuosity, a shift from tightly curving to more open bends, an overall decline in channel migration rates, an associated decrease in the frequency of neck‐cutoffs and an overall increase in channel width. As the majority of the drainage basin (96%) was already deforested in 1962, channel form and process changes were, unlike an interpretation for an adjacent river system, not attributed to altered land‐use but rather to a sharp ENSO‐driven increase in the magnitude of peak flow‐discharges of some 32% since 1972. In summary, this research revealed that recent climate and associated flow regime changes are having a pronounced effect on river channel behaviour in the Aguapeí River investigated here. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Long-term meteorological observation series are fundamental for reflecting climate changes.However,almost all meteorological stations inevitably undergo relocation or changes in observation instruments,rules,and methods,which can result in systematic biases in the observation series for corresponding periods.Homogenization is a technique for adjusting these biases in order to assess the true trends in the time series.In recent years,homogenization has shifted its focus from the adjustments to climate mean status to the adjustments to information about climate extremes or extreme weather.Using case analyses of ideal and actual climate series,here we demonstrate the basic idea of homogenization,introduce new understanding obtained from recent studies of homogenization of climate series in China,and raise issues for further studies in this field,especially with regards to climate extremes,uncertainty of the statistical adjustments,and biased physical relationships among different climate variables due to adjustments in single variable series.  相似文献   

9.
Climate-driven alterations of hydro-meteorological conditions can change river flow regimes and potentially affect the migration behaviour of fishes and the productivity of important fisheries in the Amazon basin, such as those for the continental-scale migratory goliath catfishes (Brachyplatystoma, Pimelodidae). In this study, we investigated hydrologic responses to climate change using a hydrologic model forced with climate inputs, which integrate historical (2001–2010) observations and general circulation model (GCM) projections under the emission scenario Representative Concentration Pathway 8.5. We developed an empirical model to characterize future (2090–2099) climate-change impacts on goliath catfish spawning migrations as a function of river flow depth dynamics at the upstream elevational limit of spawning (250 m) in headwater basins of the Amazon. The model results revealed spatially variable impacts of climate change on the catfish spawning migrations. The Marañón, Ucayali, Juruá, Purus, and Madeira basins had a predicted increase in the annual mean (3–8%) and maximum (1.1–4.9%) spawning migration rate (i.e., the fraction of fish that migrate to the spawning grounds in a day), mainly due to the lengthened rising phase of flow-driven migratory events during wet seasons. The Caquetá-Japurá, Putumayo-Içá, Napo, and Blanco rivers had predicted decreases (3–7%) in the mean migration rate because of decreases in the length of the rising season of flow depth and the frequency of migratory events. The predicted timing of fish spawning migrations (quantified by the temporal centroid of migration rates) was delayed by 7–10 days in the west-central and southwest regions and was 8 days earlier in the northwest and northcentral areas, due to changes in the onset of the rising season. We established a river depth baseline that controls the onset of goliath catfish spawning migration. This depth varies between 0.9–5.6 m across study sites. We found that the estimated depth baseline was most sensitive to uncertainties in river width and cross-sectional channel shape. These results may help inform sustainable adaptation strategies for ecosystem conservation and local fisheries management in the Amazon basin.  相似文献   

10.
A global climate prediction system(PCCSM4) was developed based on the Community Climate System Model, version 4.0, developed by the National Center for Atmospheric Research(NCAR), and an initialization scheme was designed by our group. Thirty-year(1981–2010) one-month-lead retrospective summer climate ensemble predictions were carried out and analyzed. The results showed that PCCSM4 can efficiently capture the main characteristics of JJA mean sea surface temperature(SST), sea level pressure(SLP), and precipitation. The prediction skill for SST is high, especially over the central and eastern Pacific where the influence of El Ni?o-Southern Oscillation(ENSO) is dominant. Temporal correlation coefficients between the predicted Ni?o3.4 index and observed Ni?o3.4 index over the 30 years reach 0.7, exceeding the 99% statistical significance level. The prediction of 500-hPa geopotential height, 850-hPa zonal wind and SLP shows greater skill than for precipitation. Overall, the predictability in PCCSM4 is much higher in the tropics than in global terms, or over East Asia. Furthermore, PCCSM4 can simulate the summer climate in typical ENSO years and the interannual variability of the Asian summer monsoon well. These preliminary results suggest that PCCSM4 can be applied to real-time prediction after further testing and improvement.  相似文献   

11.
裂步法最小二乘偏移   总被引:4,自引:0,他引:4  
最小二乘偏移的核心思想是用正向传播算子的逆算子代替其共轭转置算子进行偏移.它克服了常规偏移方法用共轭转置算子偏移的缺点.本文详细地描述了裂步法最小二乘偏移的原理,实现算法,并通过两个模型展示了裂步法最小二乘偏移的可行性和有效性.并且通过研究发现最小二乘较容易被扩展到基于其它波场延拓算子的最小二乘偏移.  相似文献   

12.
自2009年入冬以来北半球经受了创记录的严寒侵袭,联合国IPCC报告的权威性受到质疑。地球气候变化趋向陷入纷争的境地。从地质学和考古学的视角,以更长的时间周期去认识和了解气候变化规律和成因机制,或许对将来气候的长期预报有所启示。地球在漫长的演化史中经历了以千万年计的"地质气候旋回"、千百年计的"史前气候周期"及近现代以百年计的"世纪气候波动"。不同级次的周期均为内在自然因素所制约,CO2含量在地球演化史中趋于波动下降过程,当代的CO2浓度和气温均处于地质史的低点。人类活动可能在百年尺度内存在对气候和生态环境的影响。自20世纪初开始至今近百年升温趋向中,令人关注的是在中国曾有1941年、1969年、2009~2010年之交极度低温的出现,"低温节点"时距约为30~40年,似与海洋存在数十年为变化周期之说相近。由此引发对人为因素导致持续增温的质疑。2009年入冬以来的严寒是否为近百年升温波动周期的终结抑或只是次级的突变因素所致,尚有待观察。但自然因素主导的周期波动规律不可逆转,不能被未经实证而被夸大了的"人为因素"所左右。  相似文献   

13.
Much of the discussion on hydrological trends and variability in the source region of the Yellow River centres on the mean values of the mainstream flows. Changes in hydrological extremes in the mainstream as well as in the tributary flows are largely unexplored. Although decreasing water availability has been noted, the nature of those changes is less explored. This article investigates trends and variability in the hydrological regimes (both mean values and extreme events) and their links with the local climate in the source region of the Yellow River over the last 50 years (1959–2008). This large catchment is relatively undisturbed by anthropogenic influences such as abstraction and impoundments, enabling the characterization of widely natural, climate‐driven trends. A total of 27 hydrological variables were used as indicators for the analysis. Streamflow records from six major headwater catchments and climatic data from seven stations were studied. The trend results vary considerably from one river basin to another, and become more accentuated with longer time period. Overall, the source region of the Yellow River is characterized by an overall tendency towards decreasing water availability. Noteworthy are strong decreasing trends in the winter (dry season) monthly flows of January to March and September as well as in annual mean flow, annual 1‐, 3‐, 7‐, 30‐ and 90‐day maxima and minima flows for Maqu and Tangnag catchments over the period 1959–2008. The hydrological variables studied are closely related to precipitation in the wet season (June, July, August and September), indicating that the widespread decrease in wet season precipitation is expected to be associated with significant decrease in streamflow. To conclude, decreasing precipitation, particularly in the wet season, along with increasing temperature can be associated with pronounced decrease in water resources, posing a significant challenge to downstream water uses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This paper examines a seemingly anomalous situation in southern Brazil where the dunefields on Santa Catarina Island (e.g. Joaquina Beach) migrate to the NNW, almost completely the opposite direction (c. 160) to the dunefields immediately to the south (e.g. Pinheira Beach), and some much further to the north (e.g. Cabo Frio) which migrate to the SSW. A variety of mechanisms are examined to explain the differences in dunefield migration including grain size variations, topographic effects on local winds, shoreline orientation, and regional wind field changes. The mean grain sizes of the two beaches, Pinheira and Joaquina, are not sufficiently different to restrict aeolian sediment transport in either place, nor to account for a lack of transport from the NNE to the SSW in the case of Joaquina. Some topographic steering of the wind is likely but could not account for the long‐term average difference in migration trends of the island dunefields compared to the mainland dunefields. While the orientation of the shoreline to prevailing winds is an important control on beach and dune sediment transport, it is not the dominant controlling mechanism. An analysis of the regional wind patterns demonstrates that there is a major shift in the regional wind field near the island such that the dominant island winds blow from the SW/SSW while those further south blow from the NE. It is concluded that this is the predominant reason for the divergence in the direction of migration of the dunefields. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

We compare the output of various climate models to temperature and precipitation observations at 55 points around the globe. We also spatially aggregate model output and observations over the contiguous USA using data from 70 stations, and we perform comparison at several temporal scales, including a climatic (30-year) scale. Besides confirming the findings of a previous assessment study that model projections at point scale are poor, results show that the spatially integrated projections are also poor.

Citation Anagnostopoulos, G. G., Koutsoyiannis, D., Christofides, A., Efstratiadis, A. & Mamassis, N. (2010) A comparison of local and aggregated climate model outputs with observed data. Hydrol. Sci. J. 55(7), 1094–1110.  相似文献   

16.
对地震照明叠前深度偏移的基本概念、实现方法进行了分类和阐述.地震照明叠前深度偏移是通过对震源和炮记录进行合理的选择和合成,从而进行地震照明成像的一种有效方法.其可以分为平面波偏移和小束波偏移.理论模型的处理效果证明地震照明叠前深度偏移成像技术有很高的计算效率,并且还可以提高地下特定目标的成像质量.  相似文献   

17.
共偏移距道集平面波叠前时间偏移与反偏移   总被引:3,自引:1,他引:3       下载免费PDF全文
在Dubrulle提出的共偏移距道集频率波数域叠前时间偏移的基础上,提出了共偏移距道集频率波数域叠前时间偏移与反偏移一对共轭算子.讨论了该对算子的变孔径实现过程.并把该对共轭算子串连起来实现了叠前地震数据的规则化处理.指出最小二乘意义下的叠前地震数据规则化会得到更好的效果.v(z)介质模型和Marmousi模型的数值试验结果表明,方法理论正确、有效.  相似文献   

18.
青海及邻区强震迁移活动规律分析   总被引:3,自引:1,他引:2  
通过分析,研究了青海及邻区Ms 6.8强震在不同地震带之间的迁移规律;6级地震在各个地震带内部不同地段的迁移特征及不同时段。强震集聚区在各个地震带的相互迁移规律和循环特征。研究结果表明,强震存在北东方向的迁移规律。同一个地震带内存在沿规模宏大的主活动断裂自西向东或者由东向西的迁移规律。利用马尔科夫过程讨论了其迁移概率。  相似文献   

19.
J. Vaze  J. Teng 《水文研究》2011,25(1):18-35
This paper describes the rainfall–runoff modelling for New South Wales (NSW) and Australian Capital Territory (ACT) under historical climate and the likely changes to runoff around the year 2030 for the Intergovernmental Panel on Climate Change (IPCC) SRES A1B global warming scenario. Results show that the mean annual historical rainfall and runoff, averaged over the entire region, are 516 and 55 mm, respectively. There is considerable uncertainty in the global climate modelling (GCM) of rainfall response in the region to global warming. The majority of GCMs show a decrease in the mean annual rainfall and the median estimate indicates that future mean annual runoff in the region in ~2030 relative to ~1990 will be lower by 0–20% in the southern parts, no change to a slight reduction in the eastern parts and higher by 0–20% in the northwest corner. Averaged across the entire region, the median estimate is a 5% decrease in the mean annual runoff and the extreme estimates range from a 14% decrease to a 10% increase in mean annual runoff. This is the first comprehensive study on the hydrological impacts of climate change done in NSW that covers the entire state. Outputs from this study are being used to underpin the hydrology for a number of major climate change impact studies that are presently underway across NSW. The results and output datasets from this study will be available through a web interface and they can be used by all state government agencies and industries in NSW to plan for and adapt to the impacts of climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号