首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
An analysis for the formation of nonpropagating fatigue cracks at (the base of V-shaped) notch roots, based on the considerations of the extent of the critically stressed region ahead of a notch or a crack tip, and the resulting volumetric strength effect, is developed. Assuming that the minimum local cyclic stress required for crack initiation from a notch root is equal to the unnotched fatigue limit, σe, and that the minimum local cyclic stress required for the propagation of the crack is equal to the theoretical strength of the material, σe, a model of notch fatigue limit is proposed that shows that nonpropagating cracks should form at the notch base if ρ≤ ρ0, a critical root radius, provided the notch is sufficiently deep,i.e. d ≥ ρ0. The radius ρ0 is a material constant and can be estimated from known material properties. The estimated values of ρ0 are in fairly good agreement with available experimental values for steels and pure copper. For stresses near the notch fatigue limit it is suggested that p0 be regarded as a radius above which notch fatigue limit is essentially initiation controlled and below which essentially propagation controlled. The notch fatigue limit based on complete fracture can then be estimated more accurately with mild as well as sharp notches. D. N. LAL, formerly a Graduate Assistant in Materials Science, Syracuse University  相似文献   

2.
Reverse bend, constant deflection fatigue tests were performed in ambient temperature air on notched 1018 steel specimens. Endurance limit for these exhibited scatter in excess of 25 pct, and this was correlated with concentration of manganese sulfide inclusions at the notch root vicinity. For specimens designated as “high inclusion” the endurance limit was 95 MN/m2 (14 ksi); and for “low inclusion” ones it was 130 MN/m2 (19 ksi). By monitoring crack length as a function of number of cycles it was observed that unbroken specimens tested above approximately 85 MN/m2 (12.5 ksi) contained nonpropagating cracks. Also, high inclusion specimens fatigued at stresses above their endurance limit, but less than about 140 MN/m2 (20 ksi) exhibited fatigue crack hesitation; that is, cracks initiated and grew to microscopic size but then arrested for a finite number of subsequent cycles. The endurance limit for high inclusion specimens was then a stress above which arrested cracks repropagate and below which they do not. Repropagation of hesitant fatigue cracks is projected to result from inclusion related cyclic stress damage near the crack tip, which was possibly stimulated by atmospheric interactions.  相似文献   

3.
Reverse bend, constant deflection fatigue tests were performed in ambient temperature air on notched 1018 steel specimens. Endurance limit for these exhibited scatter in excess of 25 pct, and this was correlated with concentration of manganese sulfide inclusions at the notch root vicinity. For specimens designated as “high inclusion” the endurance limit was 95 MN/m2 (14 ksi); and for “low inclusion” ones it was 130 MN/m2 (19 ksi). By monitoring crack length as a function of number of cycles it was observed that unbroken specimens tested above approximately 85 MN/m2 (12.5 ksi) contained nonpropagating cracks. Also, high inclusion specimens fatigued at stresses above their endurance limit, but less than about 140 MN/m2 (20 ksi) exhibited fatigue crack hesitation; that is, cracks initiated and grew to microscopic size but then arrested for a finite number of subsequent cycles. The endurance limit for high inclusion specimens was then a stress above which arrested cracks repropagate and below which they do not. Repropagation of hesitant fatigue cracks is projected to result from inclusion related cyclic stress damage near the crack tip, which was possibly stimulated by atmospheric interactions.  相似文献   

4.
This article examines the possibility of fatigue failure as the result of fatigue crack nucleation and coalescence at stress ranges below the fatigue limit and the large crack threshold where fatigue cracks are expected not to grow. By representing the material as a two-dimensional array of beam elements, the nucleation of nonpropagating small cracks at various material locations is modeled via a statistical approach that considers fatigue crack nucleation by accumulation of damage at randomly distributed weak regions. Once nucleated, the fatigue cracks do not propagate but extend only by linking with fatigue cracks subsequently formed in the contiguous elements. Result of the computer simulation suggests that fatigue failure by crack nucleation and coalescence is feasible, but the cycles-to-coalescence is much longer than the cycles-to-initiation for the first crack. Implications of the results in fatigue life assessment based on the Kitagawa diagram are discussed for TiAl alloys.  相似文献   

5.
6.
The high cycle fatigue (HCF) and cyclic crack growth rate (CCGR) properties of the dispersion strengthened ODS-alloy MA 6000 were investigated with smooth bars and with fracture mechanics samples at 850 °C. The material was very coarse grained with the grains elongated in the rolling direction. Fatigue crack initiation and crack propagation were studied parallel and perpendicular to the rolling direction and a pronounced influence of orientation was found. The fatigue limit of sam-ples cut parallel to the grain elongation direction (p-samples) was almost a factor of 2 higher than the one of samples cut transverse to the elongation direction (t-samples). Inclusions were found to be responsible for crack initiation. For p-samples a reasonable agreement between particle size, fatigue limit, and crack growth behavior was found. For t-type samples such an agreement also exists provided differences in the crack growth behavior of short cracks and long cracks are taken into consideration. The low fatigue strength of t-samples could be linked with low Young's modulus in this direction. The crack propagation rate of long cracks is lower in t-samples than in p-samples due to crack branching along the grain boundaries. HCF-strength of MA 6000 is high compared to conventional cast alloys mainly because of reduced size of crack nucleation sites and higher fatigue threshold stress intensity range ΔKth, as a result of higher Young's modulus.  相似文献   

7.
The growth rates of fatigue cracks propagating through the case and into the core have been studied for carburized X-2M steel (0.14 C, 4.91 Cr, 1.31 Mo, 1.34 W, 0.42 V). Fatigue cracks were propagated at constant stress intensities, ΔK, and also at a constant cyclic peak load, and the crack growth rates were observed to pass through a minimum value as the crack traversed the carburized case. The reduction in the crack propagation rates is ascribed to the compressive stresses which were developed in the case, and a pinched clothespin model is used to make an approximate calculation of the effects of internal stress on the crack propagation rates. We define an effective stress intensity, Ke = Ka + Ki, where Ka is the applied stress intensity, Ki = σid i 1/2 , σi is the internal stress, and di is a characteristic distance associated with the depth of the internal stress field. In our work, a value of di = 11 mm (0.43 inch) fits the data quite well. A good combination of resistance to fatigue crack propagation in the case and fracture toughness in the core can be achieved in carburized X-2M steel, suggesting that this material will be useful in heavy duty gears and in aircraft gas turbine mainshaft bearings operating under high hoop stresses.  相似文献   

8.
Short fatigue crack growth behavior was studied in a ferrite-bainite microstructure in C-Mn steel with respect to microstructural variations. Specimens were subjected to cyclic loading at three different stress levels: 559, 626, and 687 MPa. The crack propagation rates varied from 10-4 to 10-2 μm/cycle. Crack lengths were measured using a replication technique. The growth rates were systematically decreased at microstructural heterogeneities up to a length of 3 to 4 grain diameters. A two-stage short fatigue crack growth model previously developed by Hussain et al. was modified to predict the crack growth behavior. The calculated values were within 10 pct error of the experimentally determined results. The model was then used to present the effect of grain boundaries on cracks propagating at constant rates. It was shown that the mode of presenting of the fatigue data can help in understanding different practical problems in stage I. These include situations such as block loading and short-duration stress spikes in nonpropagating crack regimes.  相似文献   

9.
张慧芳  肖振兴  周宇  钱丽华  王薇  吕知清 《钢铁》2017,52(10):89-93
 采用四点弯曲疲劳试验研究了不同应力水平下无镍高氮不锈钢的疲劳行为,并对材料疲劳裂纹的微观形貌、萌生位置及扩展路径进行了分析。结果表明,试验钢疲劳为多裂纹起裂,随着应力水平的升高,裂纹总长度逐渐增加,当应力水平接近材料屈服极限时,裂纹长度趋于稳定;裂纹大多数在滑移带处萌生,裂纹在扩展过程中产生了扭曲、偏移和分叉现象;裂纹在晶内主要沿单滑移带或多滑移带交替扩展,穿过晶界或孪晶界时大多发生了偏转。  相似文献   

10.
Fatigue cracks were propagated through carburized cases in M-50NiL (0.1 C,4 Mo, 4 Cr, 1.3 V, 3.5 Ni) and CBS-1000M (0.1 C, 4.5 Mo, 1 Cr, 0.5 V, 3 Ni) steels at constant stress intensity ranges, ΔK, and at a constant cyclic peak load. Residual compressive stresses of the order of 140 MPa (20 Ksi) were developed in the M-50NiL cases, and in tests carried out at constant ΔK values it was observed that the fatigue crack propagation rates,da/dN, slowed significantly. In some tests, at constant peak loads, cracks were stopped in regions with high compressive stresses. The residual stresses in the cases in CBS-1000M steel were predominantly tensile, probably because of the presence of high retained austenite contents, andda/dN was accelerated in these cases. The effects of residual stress on the fatigue crack propagation rates are interpreted in terms of a pinched clothespin model in which the residual stresses introduce an internal stress intensity, Ki where Ki, = σid i 1/2i = internal stress, di = characteristic distance associated with the internal stress distribution). The effective stress intensity becomes Ke = Ka + Ki where Ka is the applied stress intensity. Values of Ki were calculated as a function of distance from the surface using experimental measurements of σi and a value of di = 11 mm (0.43 inch). The resultant values of Ke were taken to be equivalent to effective ΔK values, andda/dN was determined at each point from experimental measurements of fatigue crack propagation obtained separately for the case and core materials. A reasonably good fit was obtained with data for crack growth at a constant ΔK and at a constant cyclic peak load. The carburized case depths were approximately 4 mm, and the possible effects associated with the propagation of short cracks were considered. The major effects were observed at crack lengths of about 2 mm, but the contributions of short crack phenomena were considered to be small in these experiments, since the two steels were at high strength levels, and short cracks would be expected to be of the order of 10 μm. Also, the two other steels behaved differently and in a way which followed the residual stress patterns. Both M-50NiL and CBS-1000M have a high fracture toughness, with Klc = 50 MPa · m1/2 (45 Ksi · in1/2), and the carburized cases exhibit excellent resistance to rolling contact fatigue. Thus, M-50NiL, carburized, may be useful for bearings where high tensile hoop stresses are developed, since fatigue cracks are slowed in the case by the residual compressive stresses, and fracture is resisted by the relatively tough core.  相似文献   

11.
High cycle fatigue experiments have been performed on a 7075 Al alloy, principally in the T6 temper in dry air, distilled water 0.5N NaCl and 0.5N Na2SO4 solutions as functions of cathodic charging and catalyst poisoning of the hydrogen evolution reaction. All aqueous solutions appreciably lowered fatigue resistance with Cl-ion producing the greatest reduction in resistance and SO4 =ion behaving essentially in the same manner as distilled water. Under cathodic charging conditions fatigue resistance is significantly reduced and both Cl- and SO4 =solutions produce similar fatigue lives. A catalyst poison (As) added to Cl- solutions reduces fatigue resistance relative to neutral Cl- solutions. Fractography of specimens fatigued in aqueous environments shows that a significant amount of cleavage and quasicleavage occurs, the extent of these features being apparently a function of hydrogen available to the alloy free surface and to the tips of growing cracks. On the basis of these observations, it is suggested that corrosion fatigue of 7075 alloy is essentially a hydrogen embrittlement phenomenon where the low diffusivity of hydrogen is counterbalanced by the fact that hydrogen need only be present in the alloy free surface for crack initiation and in the plastic zone of growing cracks for propagation.  相似文献   

12.
The fatigue mechanisms in a TiAl sheet alloy, heat treated to the lamellar and equiaxed microstructures, were studied to determine the effects of microstructure on the initiation of microcracks and their subsequent growth into large cracks. The nucleation and growth history of individual microcracks were followed. For comparison, fatigue crack growth and fracture toughness were also characterized using specimens containing a machined notch with a fatigue precrack. The results indicated that microcracks initiated at grain/colony boundaries and at slip bands. Most microcracks were arrested after nucleation, but a few grew at stress intensity ranges below the large crack threshold. The populations of nonpropagating and propagating cracks varied with life fractions. Ligaments in the wake of a fatigue crack were more severely strained than the crack-tip region of the main crack, and, as a result, they were more prone to fatigue failure. The destruction of the crack-wake ligaments is expected to result in lower fracture resistance in materials under cyclic loading than those under monotonic loading. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.  相似文献   

13.
《粉末冶金学》2013,56(2):149-156
Abstract

Mechanisms of fatigue crack growth have been studied for a range of PM steels at relative densities of 0·90 and 1·0, for which strength, fracture toughness, and microstructural information was also available. It is shown that the Paris exponents for steady state crack growth are between 8 and 18 when ρr is ~0·9 but when ρr is ~1·0 the exponents are between 2·6 and 4·0, i.e in the range typical of wrought steels (2–4). At both densities, threshold stress intensities are between 5·5 and 10·8 MPa m1/2 when R = 0·1. Combinations of these thresholds and yield strengths are comparable with those for wrought steels. When R = 0·8, reductions in threshold to between 2·7 and 5 MPa m1/2 are attributed to crack closure effects. At ρr = 0·90, Fe–0·5C fails by progressive rupture of sinter necks. Astaloy A, with 0·2%C and 0·6%C, and Distaloy AB–0·6C have smaller plastic zone sizes and the cracks follow more difficult paths through particles as well as necks. When ρr is ~1·0, fracture is partially by true fatigue modes and partly by cleavage, the bursts of cleavage being more noticeable when Kmaxis high.  相似文献   

14.
Fracture and fatigue experiments have been conducted on liquid phase bonded (LPB) and solid-state bonded (SSB) aluminum-alumina interfaces. The LPB interfaces contain voids and dendritic FeAl3 precipitates, whereas SSB interfaces are relatively defect-free. These precipitates result in local embrittlement, yet both interfaces are strong and tough. Upon cyclic loading, mode 1 cracks in both systems grow alternately along the interface and within the A1. The development of a tortuous crack path elevates the apparent fatigue threshold through crack closure. Under mixed mode loading, fatigue cracks approaching SSB interfaces propagate through the A1 rather than along the interface. Conversely, for LPB interfaces, mixed mode cyclic crack growth along the interface occurs in preference to propagation in the A1. Correlation between the striation spacing and the crack tip opening displacement suggests a growth mechanism based on crack tip blunting.  相似文献   

15.
The mechanisms of the fatigue of mill-annealed Ti-6A1-4V were studied at 600°F and room temperature. Early crack initiationN 0/N f< 0.14) was found to occur in hcpα-grains by a slip-band mechanism under all but the least severe conditions of cyclic stress. Under cyclic stresses near the fatigue limit at room temperature, fatigue cracks began much laterN 0/N f ∼ 0.4) at the interface between hcpα and bccβ grains without detectable slip. Under all conditions, Stage I fatigue crack growth occupied 50 to 80 pct of the total life. Although mechanical twins were produced in profusion near the growing Stage II fatigue cracks, they appeared to play no role in crack initiation or Stage I crack growth; nor did they facilitate Stage II growth. None of the observations could be interpreted as evidence for a metallurgical instability or strain-induced phase transformation which might be harmful to the fatigue resistance of the alloy. J. C. GROSSKREUTZ, formerly with Midwest Research Institute  相似文献   

16.
Different stages of the Very High Cycle Fatigue (VHCF) crack evolution in tool steels have been explored using a 20 kHz ultrasonic fatigue testing equipment. Extensive experimental data is presented describing VHCF behaviour, strength and crack initiating defects in an AISI H11 tool steel. Striation measurements are used to estimate fatigue crack growth rate, between 10?8 and 10?6 m/cycle, and the number of load cycles required for a crack to grow to critical dimensions. The growth of small fatigue cracks within the “fish‐eye” is shown to be distinctively different from the crack propagation behaviour of larger cracks. More importantly, the crack initiation stage is shown to determine the total fatigue life, which emphasizes the inherent difficulty to detect VHCF cracks prior to failure. Several mechanisms for initiation and early crack growth are possible. Some of them are discussed here: crack development by local accumulation of fatigue damage at the inclusion – matrix interface, hydrogen assisted crack growth and crack initiation by decohesion of carbides from the matrix.  相似文献   

17.
The subsequent recrystallization technique was used to study the process of local damage accumulation around a notch under conditions of low-cycle fatigue. A 0.8-in. compact tension specimen of 304 stainless steel with a notch radius of 1 mm was used. The accumulated plastic zone around notch increases with the number of cyclesN. The accumulated plastic strain within the zone also increases withN, producing the strain gradient (damage gradient). A fatigue crack initiates when the accumulated plastic strain at the notch root reaches a critical value equal to the fracture strain of the material; that is, when the accumulated plastic work at the crack initiation site becomes critical. The fatigue crack emanating from a notch root grows through the pre-existing damaged zone. It is shown that this local damage accumulation approach can explain the fast growth of a short crack from a notch.  相似文献   

18.
The fatigue crack growth rateda/dN of short cracks and the transition to long crack behavior were investigated for ARMCO-iron. Deep notched specimens with very small notch radius (between 1.5 and 4 μm) were used. The experiments were performed with constant stress intensity ranges for various stress ratios; the fatigue crack growth rate was measured as a function of the crack length. The results permit a discussion of the mechanisms responsible for the different behavior of “short” and “long” cracks.  相似文献   

19.
High frequency (123 Hz) fatigue crack propagation studies were conducted under rising ΔK conditions (R-ratio = 0.22) on single edge notch specimens of austenitic stainless steel (type 316L) that contained an annealed precrack. Tests were conducted in near neutral (pH 5.5) solutions of 1 M NaCl and 1 M NaCl + 0.01 M Na2S2O3 under potentiostatically controlled conditions and in desiccated air. Attention was directed primarily to the near threshold behavior and the stage I (crystallographic) region of cracking. Good mixing between the crack solution and bulk solution was obtained and crack retardation and arrest effects, due to surface roughness induced closure, were minimized at high anodic potentials by electrochemical erosion. Thermodynamic considerations showed that hydrogen played no role in fatigue crack propagation. Analysis of the results in terms of the estimated effective cyclic stress intensity, ΔK eff, showed a systematic effect of potential on the average crack growth increment per cycle,da/dN. Anodic dissolution processes were considered to make an insignificant contribution toda/dN. A model was proposed for stage I fatigue cracking based on the effect of oxide nucleation rate on restricted slip reversal. The essential features of the model were considered to be relevant to cracking in aqueous environments and in desiccated air.  相似文献   

20.
This work examined the influence of microstructure on the surface fatigue crack propagation behavior of pearlitic steels. In addition to endurance limit or S(stress amplitude)-N(life) tests, measurements of crack initiation and growth rates of surface cracks were conducted on hourglass specimens at 10 Hz and with aR ratio of 0.1. The microstructures of the two steels used in this work were characterized as to prior austenite grain size and pearlite spacing. The endurance tests showed that the fatigue strength was inversely proportional to yield strength. In crack growth, cracks favorably oriented to the load axis were nucleated (stage I) with a crack length of about one grain diameter. Those cracks grew at low ΔK values, with a relatively high propagation rate which decreased as the crack became longer. After passing a minimum, the crack growth rate increased again as cracks entered stage II. Many of the cracks stopped growing in the transition stage between stages I and II. Microstructure influenced crack propagation rate; the rate was faster for microstructures with coarse lamellar spacing than for microstructures with fine lamellar spacing, although changing the prior austenite grain size from 30 to 130 jμm had no significant influence on crack growth rate. The best combination of resistance to crack initiation and growth of short cracks was exhibited by microstructures with both a fine prior austenite grain size and a fine lamellar spacing. Formerly with Carnegie Mellon University  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号