首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
采用激光熔覆技术成功制备了CoCrFeNiNbx (x=0, 0.25, 0.5, 0.75, 1.0)高熵合金涂层,研究了Nb元素对高熵合金涂层微观组织和显微硬度的影响,分析了CoCrFeNiNb0.75涂层在25~800 ℃的摩擦磨损性能和机制. 结果表明:CoCrFeNiNbx高熵合金涂层主要由FCC (面心立方)相与具有HCP晶格结构的Laves相组成. 随着Nb摩尔含量的增加,CoCrFeNiNbx的微观组织由单一的胞状晶FCC固溶体相(x=0)向亚共晶组织(x=0.25)、共晶组织(x=0.5)和过共晶组织(x=0.75,1.0)逐步发生演变. CoCrFeNiNb0.75涂层具有最高的平均硬度(574 HV),表明适量的Nb元素的掺杂能有效提高涂层的显微硬度,这是固溶强化、第二相强化以及层片共晶组织中产生的大量新界面阻碍位错运动的边界强化相互作用的结果. CoCrFeNiNb0.75涂层在室温下的磨损机制主要为氧化磨损和轻微的磨粒磨损,而在400和800 ℃下均为氧化磨损. 在800 ℃时,磨损表面形成了致密的氧化物釉质层,起到了良好的减摩抗磨作用,使高熵合金在高温环境下表现出了优异的摩擦磨损性能.   相似文献   

2.
针对工业领域对新型高强高耐磨金属材料的需求,制备了(CuMnNi)100-xAlx (x=0, 5, 10, 15)系列高熵铜合金,研究了Al含量对高熵铜合金的物相组成、显微组织、力学性能和摩擦磨损性能的影响. 结果表明:CuMnNi高熵合金仅由面心立方结构(FCC)的高熵固溶体相组成,Al元素的添加对合金基体FCC相产生了强烈的固溶强化作用,并促进了体心立方(BCC)相形成. FCC相具有良好的塑性和韧性,而BCC相具有高强度和高硬度,两者共同作用使(CuMnNi)100-xAlx系列高熵铜合金的强度随Al含量增加而提高,而塑性和韧性不断降低. 其中,(CuMnNi)90Al10高熵铜合金中FCC相和BCC相的含量达到最佳匹配,使其具有优异的综合力学性能. 室温下,得益于优异的力学性能和硬质BCC相良好的抗磨作用,(CuMnNi)90Al10高熵铜合金的耐磨性优于常规耐磨铝青铜C6161,磨粒磨损为其主要磨损机制.   相似文献   

3.
通过引入碳元素,设计了一种以原位形成的碳化物为增强相的高熵合金Al_(0.2)Co_(1.5)CrFe_(1.2)Ni_(1.5)TiC_(0.4),并采用放电等离子烧结(SPS)技术成功制备了这种高熵合金.采用XRD、SEM、EDS、万能材料试验机和高温摩擦磨损试验机等研究了微观组织、力学性能和室温至800℃下的摩擦学性能.结果表明:Al_(0.2)Co_(1.5)CrFe_(1.2)Ni_(1.5)TiC_(0.4)高熵合金由面心立方(FCC)结构的高熵固溶体基体相和弥散分布的TiC陶瓷相组成.FCC相使高熵合金具有良好的塑性和韧性,而TiC增强相赋予了高熵合金高的硬度和强度.随着温度的升高,高熵合金的摩擦系数和磨损率均具有逐渐减小的趋势.在800℃时,鉴于摩擦氧化作用,在磨损表面形成了致密的氧化物釉质层,起到了良好的减摩抗磨作用,使高熵合金表现出了优异的高温摩擦学性能.  相似文献   

4.
AlCoCrFeNi高熵合金因其优异的综合力学性能而有望成为新一代高温结构材料,但对其高温摩擦磨损性能的研究还较为少见.本文中应用放电等离子烧结(SPS)技术制备了AlCoCrFeNi高熵合金,研究了其显微组织和力学性能,系统地考察了其在室温至800℃时的摩擦磨损性能.结果表明:应用SPS技术制备的AlCoCrFeNi高熵合金主要由FCC相、无序BCC相和少量有序BCC相组成;呈网格状分布的FCC相使高熵合金具有良好的塑性和韧性,而呈等轴状分布的BCC相赋予了高熵合金优异的强度;高熵合金室温至800℃时的摩擦系数在0.43~0.51之间,磨损率低于10–5mm3/(N·m).室温至中温阶段主要为磨粒磨损,中温至高温阶段的磨损机制为磨粒磨损、黏着磨损和塑性变形综合作用.高温下高熵合金表面形成了一层主要由为Al2O3和Cr2O3组成的氧化物膜,在一定程度上起到抗磨作用.  相似文献   

5.
采用真空电弧熔炼技术制备了CoCrFeNiWx(x=0.25、0.5、0.75及1.0)系列高熵合金,研究了W元素含量对合金晶体结构、显微组织、力学性能以及室温与900℃摩擦学性能的影响.结果表明:合金中W含量较低时形成单相面心立方(FCC)固溶体,W含量较高时会促进金属间化合物μ相的形成,随着W含量提升,合金显微组织由FCC胞状树枝晶(x=0.25)转变为FCC树枝晶及晶间层片状(FCC+μ)共晶组织(x=0.5、0.75),最后转变为FCC基体上分布的粗大树枝状μ相(x=1.0).由于W元素的固溶强化及原位生成金属间化合物μ相的第二相强化作用,使合金的强度和硬度等力学性能显著增加的同时塑性降低.在试验载荷为10 N,滑动速度0.3 m/s的测试条件下,CoCrFeNiWx系列高熵合金与Si3N4陶瓷球配副时的球-盘摩擦试验结果表明:W元素的添加显著改善了合金的室温耐磨性,但对摩擦系数的影响较小;而900℃摩擦时,摩擦表面形成的多元复合氧化物摩擦釉质层具有良好的减摩抗磨作用,特别是W元素氧化产生的...  相似文献   

6.
使用真空电弧熔炼技术制备了Al0.2Co1.5CrNi1.5Ti0.5Mox(x=0.0, 0.1, 0.2, 0.3, 0.4)高熵合金,研究了Mo含量对该高熵合金组织结构、力学性能和摩擦学性能的影响规律及其作用机制. Al0.2Co1.5CrNi1.5Ti0.5高熵合金由FCC相和有序AlNi3相组成,Mo元素添加后促进形成σ相.较大原子半径的Mo元素引发的晶格畸变效应和σ硬质相析出引起的第二相强化效应赋予高熵合金优良的力学和摩擦学性能.随着Mo含量的提高,合金的硬度增加了40.4%,屈服强度增加了32.1%.对该合金的摩擦磨损性能进行研究,发现Mo元素的添加显著改善了高熵合金的摩擦学性能,尤其是当Mo的摩尔比为0.4时,高熵合金室温磨损率为2.62×10-6 mm3/(N·m),800℃时的磨损率为6.23×10  相似文献   

7.
采用真空感应熔炼技术制备了CoCrFeMoNiCx (x=0、1、2、3、4和5)系列中熵合金,研究了C元素的掺杂及其含量对合金微观组织、力学性能和摩擦学性能的影响. 结果表明:CoCrFeMoNiCx系列中熵合金主要由体心立方(BCC)相组成;C原子间隙固溶于BCC相,增大了合金的晶格常数,在XRD谱图中表现为衍射峰随着C含量的增加向小角度方向偏移;当C的质量分数大于2%时,BCC晶粒中有少量条状碳化物形成;随着C含量的增加,合金的硬度、强度和断裂韧性等力学性能显著提高,主要归因于C原子的间隙固溶强化效应和少量条状碳化物的出现. 与此同时,合金的磨损率持续降低,表现出良好的耐磨损性能. 室温下的磨损机制为磨粒磨损、塑性变形和疲劳磨损.   相似文献   

8.
钢结构表面涂层受风沙冲蚀机理和评价方法   总被引:1,自引:0,他引:1  
内蒙古中西部地区钢结构表面涂层受风沙冲蚀磨损严重.在模拟钢结构涂层受风沙冲蚀磨损试验的基础上,应用扫描电子显微镜(SEM)观测涂层在不同冲蚀条件下的冲蚀磨损部位微观形貌,分析涂层材料受风沙冲蚀磨损的损伤机理,提出了评价涂层冲蚀磨损程度的计算方法.结果表明:低角度冲蚀时微切削作用占主导,硬度起决定作用,高角度冲蚀时挤压变形占主导,柔韧性起决定作用,由于涂层硬度较低,柔韧性好,所以高角度时涂层的耐冲蚀性能较好;最大冲蚀磨损失重量出现在45°左右,是由于该材料具有介于塑性和脆性材料之间的冲蚀磨损特性;速度越大,粒子的动能越大,冲蚀磨损失重量越大;在低浓度时,冲蚀磨损失重量随着浓度的增加而增加,而在高浓度时则出现下降的趋势;评价公式的计算结果与实验结果吻合.研究结果为钢结构涂层的耐久性研究提供了理论依据.  相似文献   

9.
等径角挤压后Ti5553钛合金的冲蚀磨损机理演变   总被引:1,自引:0,他引:1  
本文中系统研究了经等径角挤压(ECAE)处理后的Ti5553钛合金在海砂环境中的冲蚀磨损机理演变历程和失效原因.发现Ti5553钛合金在高角度冲蚀工况下,其冲蚀磨损机理从初期的微切削转变为冲击挤压变形,并保持稳定;合金显微组织中弥散的α相以及ECAE工艺影响了冲蚀机理演变过程及冲蚀磨损程度;提高合金的强度、韧塑性对于抵抗冲蚀磨损起到了促进作用.  相似文献   

10.
采用SRV-Ⅳ型微动摩擦磨损试验机对近单一面心立方(FCC)相AlCoCrFeNi高熵合金及其抛丸试样在常温下的摩擦磨损性能和行为进行了较详细的考察. AlCoCrFeNi高熵合金的磨损量随摩擦频率和法向载荷的变化均大体呈现正相关性.随着摩擦频率升高(6~40 Hz),该高熵合金摩擦界面的原子排列由主要沿(100)晶面逐渐转变为沿(111)晶面,表现出显著的择优取向,其主要磨损机制由氧化磨损和分层磨损逐步过渡到塑性变形和分层磨损;拉曼光谱分析表明该合金在各摩擦频率(除30 Hz外)下形成的磨痕中存在复杂氧化物,其结晶构造与Al2O3和Cr2O3相似.随着法向载荷不断增大(10~200 N),该合金摩擦界面的晶粒更加细化,摩擦界面的原子排列更加趋向沿(111)晶面,其主要磨损机制由氧化磨损过渡到疲劳磨损,最终转变为黏着磨损.由于细晶强化作用,经抛丸处理后该AlCoCrFeNi高熵合金表面显微硬度达403 HV,相比抛丸前提高近1倍.抛丸处理形成的表面强化层有利于降低合金的磨损,其厚度约为25μm.随着...  相似文献   

11.
稀土金属Y对真空熔结Ni基涂层显微组织和耐磨性的影响   总被引:8,自引:1,他引:7  
宣天鹏  闵丹  霍影 《摩擦学学报》2005,25(2):102-106
研究了稀土金属Y对真空熔结Ni基合金涂层显微组织及化学组成、硬度和耐磨性的影响.结果表明:稀土金属Y可以改善真空熔结Ni基合金涂层的显微组织,阻碍针状相的析出,细化球状相,减轻碳钢母材中Fe对Ni基合金涂层的"稀释"作用,降低Ni60涂层中Fe的含量,提高Ni、Cr元素的含量;与此同时,稀土金属Y可明显提高Ni60涂层的硬度和耐磨性,降低摩擦系数,使Ni60涂层由微观犁沟和微观断裂剥落磨损形式转变为单一的微观犁沟磨损.  相似文献   

12.
火炮驻退机的节制环经常由于冲蚀磨损导致失效。为有效减少节制环磨损程度,提高节制环的可靠性,利用材料表面强化技术,通过微弧沉积与激光熔覆2种技术工艺,制备了铜基合金和镍基合金耐磨涂层,并测试和分析了不同种类涂层的组织形貌、涂层质量及显微硬度。在制备的4种耐磨涂层中,微弧沉积铜基合金涂层和激光熔覆镍基合金涂层的性能较好。为检验合金涂层的实际耐磨性能,在驻退机内安装节制环改进件,在反后坐装置试验台上实施后坐冲击试验。从节制环改进件的磨损形貌和冲蚀磨损量等实验数据得出,激光熔覆镍基合金涂层有较好的耐磨能力,可以作为增强火炮驻退机节制环耐磨能力的有效方法。  相似文献   

13.
Al2O3—40%TiO2和Cr2O3等离子喷涂层的摩擦磨损特性   总被引:7,自引:3,他引:4  
研究了AC4C铸铝合金表面等离子喷涂Al2O3-40%TiO2和Cr2O3陶瓷粉末涂层的滑动摩擦磨损特性;采用划痕试验方法测定了涂层与基体之间的结合强度;用扫描电子显微镜观察分析了磨痕形貌和涂层显微组织特征.研究结果表明:Cr2O3涂层的摩擦学性能优于Al2O3-40%TiO2涂层;涂层的结合强度、硬度和表面空隙对磨损影响较大;Al2O3-40%TiO2涂层的磨损机理主要表现为塑性变形和层状剥离;而Cr2O3涂层则主要为磨粒磨损  相似文献   

14.
利用激光熔覆原位合成技术在纯钛表面制备了Ti3Al金属间化合物涂层.用X射线衍射仪、扫描电镜和高分辨透射电镜分析了涂层的组成和组织结构.在UMT-2MT摩擦磨损试验机上对Ti3Al金属间化合物涂层在不同载荷和不同滑动速度下的摩擦磨损性能进行了测试.结果表明:Ti3Al金属间化合物涂层的主要组成物相为Ti3Al,涂层与基材冶金结合,涂层显微组织结构主要为树枝状晶,涂层的平均显微硬度约为HV0.2530,涂层的摩擦系数随载荷和滑动速度的增加而减小,磨损体积随载荷和滑动速度的增加而增加.Ti3Al金属间化合物涂层相对于钛基材耐磨性能显著提高.  相似文献   

15.
研究了不同热处理条件下Al-Si-Cu合金的力学性能、显微组织及磨损性能.结果表明:与铸态合金相比,T6态合金的晶粒最为细小,Si、Al2Cu和Al Fe Mn Si第二相尺寸变小、变圆整且分布均匀,其力学性能和耐磨性能最好.当载荷小于500 N时,T6态和铸淬态合金的耐磨性能相当,二者表现为磨粒磨损;载荷为500~1 000 N时,Si相受水平方向塑性流变应力作用均匀分布在磨面表面,改善了润滑效果使摩擦系数降低,虽然开始向黏着磨损机制转变,但合金仍保持了较好的耐磨性能;载荷大于1 000 N时,Si相和Al2Cu相周围出现了微裂纹和严重的撕裂状的塑性变形,摩擦系数增大,逐步向剥层磨损转变,合金耐磨性能显著下降.  相似文献   

16.
激光熔覆Zr—Al—Ni—Cu复合涂层组织及其摩擦磨损性能   总被引:5,自引:0,他引:5  
采用激光熔覆技术在 Ti基体上制备了 Zr65Al7.5Ni1 0 Cu1 7.5合金涂层 ,涂层由金属间化合物、少量非晶和纳米晶构成 .分别向涂层中添加 C或 B及 Si等组元 ,使涂层硬度由原来的 10 41H K升高到 10 85 H K和 12 5 2 H K;同时在干摩擦条件下考察了其摩擦磨损行为 .结果表明 ,涂层的摩擦系数分别为 0 .14、0 .16和 0 .17,涂层磨损机制以磨粒磨损、剥层磨损和粘着磨损为主  相似文献   

17.
为提高304不锈钢的摩擦学性能,将质量分数为30%和60%的球形WC添加到铁基复合粉末,采用等离子堆焊技术在其表面制备了WC增强铁基复合涂层.分析其显微组织结构、物相和显微硬度,在恒定载荷(50 N)和滑动速度(20 mm/s)下进行干摩擦磨损试验,研究其干滑动摩擦学性能.结果表明:富含Cr的固溶强化奥氏体、高硬度的Cr7C3和WC增强相的存在,提高了WC增强铁基堆焊层的硬度,30%WC和60%WC涂层的显微硬度达到HV0.2665和HV0.2724,比铁基涂层提高了21.1%和31.9%,是304基体的3.7和4倍;30%WC和60%WC涂层的摩擦系数和磨损率分别为0.59和2.639×10~(–6) mm~3·N~(–1)·m~(–1),0.42和1.111×10~(–6) mm~3·N~(–1)·m~(–1).30%WC和60%WC涂层均表现出优异的耐磨性能,其磨损机理分别为黏着磨损和二体磨粒磨损的混合机制,和三体磨粒磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号