首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
我国页岩气资源丰富,是替代石油生产乙丙烯的原料。美国页岩气为原料生产乙烯的成本仅为石油制乙烯的38%。页岩气生产合成气制甲醇,再生产乙丙烯的生产过程采用组合生产工艺,包括页岩气纯氧自热转化制合成气,合成气在等压下直接合成甲醇,省去了合成气压缩机,副产高压蒸汽作空分空压机动力平衡能源,不需燃料加热,无燃气CO2排放。页岩气自热转化制得的合成气在H2-CO/CO+CO2=2.1~2.2,压力5MPa下合成甲醇,甲醇合成采用气冷和水冷串联合成,提高了合成转化率,合成甲醇浓度很高,省去了甲醇精馏。甲醇制烯烃采用甲醇脱水制烯烃(MTO)工艺,MTO工艺原料需求低,原料消耗少,烯烃收率高,乙烯、丙烯可调性大,产品分离简单方便,材质要求低。由甲醇催化制得的烯烃气体不含有机硫化物和乙炔,省去了十分复杂的烯烃分离工艺,所以甲醇制乙烯比石油制乙烯具有较大的竞争力,是今后乙烯工艺技术的发展方向。设计的4.8×108m3页岩气制60×104t/a甲醇,再生产24×104t/a乙丙烯组合工艺总投资约为26亿元,年利税9.94亿元,投产后约3年即可回收投资。  相似文献   

2.
四川广元市苍溪利用超大储量天然气田的优势可发展天然气化工基地。乙烯生产工艺路线有石油乙烯路线即石脑油裂解制乙烯、煤制甲醇生产烯烃路线和天然气制甲醇生产烯烃路线。石油制烯烃路线需与大炼厂相结合,工艺流程及环境治理复杂,设备多造成投资费用大、能耗高,而且原料石油价格昂贵。乙烯生产由石油乙烯向天然气或煤炭制甲醇生产乙烯转变已成为今后的工艺技术发展方向。四川广元市苍溪天然气化工基地规划方案为:建天然气为原料制50×104t/a甲醇的装置共4套(共生产甲醇200×104t/a),天然气制甲醇生产乙、丙烯40×104t/a的装置共两套(共产乙、丙烯80×104t/a)。基地总年用天然气16×108m3/a,用电10×104kW,总投资约100亿元,总年产值约92亿元,利税约26.5亿元。甲醇生产采用国内开发已成功用于大规模生产的节气减排CO2的二段炉纯氧自热转化合成甲醇工艺;甲醇脱水制乙、丙烯技术也采用国内开发已实现工业化生产的新工艺。规划设计采用的工艺技术先进、能耗低、投资省、效益好、天然气中碳元素充分利用。天然气制乙、丙烯的生产成本比以石油为原料的低,且无环境污染,产品有竞争力。  相似文献   

3.
内蒙古苏里格甲醇厂一套天然气制甲醇合成气的装置原采用一段外热蒸汽转化工艺.甲醇生产能力为18×10^4t/a。与外加热蒸汽转化工艺相比,轻烃自热转化大约用1m^3 O2可替代0.5m^3 CH4,采用天然气纯氧自热转化制甲醇合成气的两段转化工艺(增设二段炉)进行改造,可增加甲醇生产能力15×10^4t/a,配套改造投产后甲醇生产能力可达到33×10^4t/a,改造后生产甲醇的天然气消耗量由1100m^3/t(标准)下降为960m^3/t(标准)。所用自热转化工艺采用多气流转化炉与低温混合喷射外燃式烧嘴配套的创新技术,该技术的成功应用,达到了节气12.7%、增产83.3%的目的。采用该新工艺生产甲醇合成气可节省原料天然气20%~30%,减排CO2 70%~95%。  相似文献   

4.
焦炉气和高炉气合用制甲醇再产乙烯新工艺,以钢铁企业现用作燃料和发电用的焦炉气与高炉气为原料,采用国内开发的焦炉气高温非催化转化工艺制取合成气,可在高压转化压力下等压合成甲醇,省去了合成气压缩机。合成的甲醇再采用我国自主开发并已工业化生产的煤制甲醇生产烯烃的新技术。建议把山东齐鲁石化已停产的渣油为原料的生产能力10×104t/a的等压合成甲醇装置,改造成以焦炉气为原料的生产能力为25×104t/a的甲醇生产装置,甲醇再进一步生产10×104t/a乙烯、丙烯。以此作为示范装置建在攀枝花钢铁公司。示范成功后可进一步放大到50×104t/a甲醇系列生产装置和20×104t/a乙烯、丙烯配套生产装置并在全国推广。经济技术分析表明,25×104t/a甲醇生产装置投资2.5亿元,投资回收期约为2年,10×104t/a乙烯、丙烯生产装置投资14.5亿元,投资回收期不到3年。  相似文献   

5.
重庆市万利来化工公司一套双一段空气转化制5×10^4t/a合成氨用合成气装置,采用三一段纯氧自热转化工艺改造成8×10^4t/a甲醇用合成气装置。其工艺改造的关键在于对二段炉的改造,主要采用结构特殊的混合器(烧嘴),对炉顶部结构也作相应的改造:预热器中的空气改用纯氧,还需调整脱硫后的天然气分配量、一段炉混合器负荷;增加空分装置和氧气加压输送系统等。改造后的万利来化工公司的三一段纯氧自热转化工艺包括:①外加热蒸汽转化;②换热转化;③原料天然气直接加入自热转化炉。改造后生产每吨甲醇耗用的天然气量从改造前的1000~1050m^3(标准)降低到780~800m^3(标准);碳氢利用率由53.8%~71.4%提高到87.5%~89.7%。建议把四川某厂正在拟建的以回收炼厂气为原料.采用三一段纯氧自热转化法制甲醇的装置,作为示范装置进行总结完善,然后推广该技术。  相似文献   

6.
我国轻烃资源丰富,是制氨、尿素与甲醇的主要原料。我国现年产合成氨和甲醇近3000×104t,耗用轻烃(折CH4计)近300×108m3/a,大都采用外燃蒸汽转化,其中包括用干燃料的轻烃约100×108m3/a,并燃烧排放出CO2达2000×104t/a。采用我国成功开发的纯氧自热转化替代外燃蒸汽转化,用2m3O2可替代出燃料1m3CH4,免除产生CO2排放2kg/m3CH4,同时将节省下来的轻烃燃料作原料用可增产30%。与外燃蒸汽转化相比,新工艺原料消耗可降低20%~30%,甲醇合成能力可提高20%~100%,减排CO220%~80%,而且新工艺的转化炉体积小、造价低、省去了耐高温贵镍合金材料、使用寿命长。我国近3000×104t/a轻烃制氨、甲醇生产厂,如果应用此新工艺替代传统外燃蒸汽转化工艺,每年可节省轻烃燃料约100×108m3,可用于增产氨、甲醇125×104t/a,减排CO22000×104t/a。我国若在四川苍溪,采用纯氧自然转化、无CO2排放的等压合成甲醇转化制乙烯工艺,建设2×50×104t/a乙、丙烯基地,仅耗用天然气20×108m3/a。  相似文献   

7.
甲醇合成气的制取与等压合成创新工艺的发展前景   总被引:2,自引:2,他引:0  
介绍了甲醇合成工艺的进展,指出现代工业生产采用压力为5MPa的高压造气等压合成甲醇工艺,分析了合成气对甲醇合成的影响。重点阐述了轻烃转化制甲醇合成气的创新工艺——三一段(即外热蒸汽转化、换热转化和自热转化)纯氧转化工艺的特点、原理、工艺流程及主要物耗能耗指标,并与传统工艺进行了对比。举例说明了高压合成气等压合成甲醇技术的推广应用。最后对我国煤炭能源化工综合发展的产品开发和规划框架提出了建议。  相似文献   

8.
催化裂化和其他非常规工艺生产丙烯技术进展   总被引:1,自引:0,他引:1  
预计2010年全球丙烯总产能为9680×10^4/a,其中亚太地区所占比例最大,预计2010年亚太地区丙烯产量2426.9×10^5/a,占全球产量的32.4%。2015年全球丙烯总产能将超过1.086×10^5/a。美国2010年丙烯产能达到1160×10^4~1190×10^4t/a。占世界总产能的比例约为12%。由于炼厂构型、地区供需的差异,以及替代生产技术的开发应用,世界轻烯烃生产的影响因素具有很大的区域性特点。丙烯生产工艺开始发生变化,传统的蒸汽裂解工艺在全球丙烯产能中的比例逐步减小,FCC工艺和专用技术所占比例逐步增大,据预测,2015年专用丙烯生产技术所占比例将达到5%~12%。FCC生产丙烯技术和专用丙烯生产技术(包括易位反应、丙烷脱氢、甲醇制烯烃、C4和C5裂化为丙烯技术)工业化开发均取得显著成果。这些技术根据其原料的可获得性和最终产品的市场情况,具有各自的竞争优势。最新的科研活动反映出各种丙烯生产技术之间竞争激烈。FEE增产烯烃工艺开发包括多反应区、双提升管反应器、下行式反应器等和生物基烃共进料技术,以及ZSM-5沸石添加剂的制备与应用。甲醇制烯烃的研发重点是MTO催化剂的合成及其特征描述。研发工作的另一趋势是开发将多种工艺整合在一起的一体化加工处理方案。  相似文献   

9.
四川阿坝州地区地处高原山区,拥有水电和地矿资源优势,以该优势为基础,规划了资源综合利用循环经济型发展项目。利用阿坝州山区水电资源发展高效电化学化工产业,以45×104t/a氯酸钠和30×104t/a电石为基础,将氯酸钠电解尾气(H2)和电石炉(采用密闭式电石炉)尾气(CO、CO2)回收充分利用合成甲醇,再以甲醇为原料生产高附加值下游产品——二甲醚、甲醇蛋白、甲醛、脲醛树脂、中(高)密度纤维板。形成了40×104~50×104t/a氯酸钾,30×104t/a电石,15×104t/a甲醇,5.0×104t/a二甲醚,2.0×104t/a甲醇蛋白,8.0×104t/a甲醛,12×104t/a脲醛树脂,30×104m3中、高密度纤维板的生产规模。项目总投资21.71亿元,年销售收入为45.59亿元,年利税达到10.29亿元。回收尾气可增产15×104t/a甲醇,所用甲醇合成工艺比常规工艺能耗降低1/3,除了可观的经济效益外,每年还可减排CO223.3×104t,实现了保护生态、振兴地方经济的科学发展。  相似文献   

10.
天然气三一段纯氧转化制合成气新工艺中,外加热蒸汽转化工艺段承担10%~15%的CH4负荷,用于为开车和保障自热部分氧化提供较高温度的一段转化气(〉650℃);其余85%~90%的CH4负荷由换热转化工艺段和二段炉纯氧自热转化工艺段承担。所用的换热转化工艺,将传统的两段蒸汽转化工艺加热用的占天然气总耗量1/5~1/4的燃料天然气省下用作原料,从而使每吨合成氨的天然气耗量从传统的两段蒸汽转化的1000m^3(标准)降到800~850m^3(标准)。三一段纯氧转化制合成气新工艺比传统一段外加热蒸汽转化工艺可减少85%~90%的燃料气,同时降低相应的CO2排放。从开车到投产所需的时间为6~8d,大大缩短了开车周期。介绍了用该新工艺对我国天然气生产合成氨装置进行扩建改造的工程设计方案,以及天然气三一段转化等压一次变换制氨联产尿素的生产设计方案。  相似文献   

11.
实现CO2零排放的煤气化制甲醇创新工艺   总被引:1,自引:1,他引:0  
粉煤气化制生产甲醇的合成气(CO+H2),其H2/CO(物质的量比)为0.42,而合成甲醇的H2/CO应为2。所推荐的创新工艺,通过配入水电解制的H2,使合成气巾的H2/CO达到2,从而免除了传统煤制甲醇工艺中把多余的CO同水蒸气转换成H2+CO2,传统工艺不但浪费了资源,还造成CO2大量排放。有人曾实验用CO作水电解介质制氢,使1m^2的H2的耗电量从4.76kW·h降到1.667kW·h,所推荐的创新工艺可利用高CO含量的部分煤气作水电解介质循环制氢配入合成气中,使其H2/CO达到2,这样煤气中的CO还可增产1倍的甲醇。所用的壳牌粉煤纯氧气化工艺,通过改造使气化压力从4MPa提高到6~6.5MPa,就可实现等压合成甲醇,从而可省去合成气压缩机,简化工艺流程.节省能耗和投资。建议国家进行投资,在四川沪州地区开发建设煤气化配水电解制氢联合制合成气用于生产2×(60×10^4t/a)甲醇的示范装置,然后完善推广。  相似文献   

12.
卜阙 《中外能源》2008,13(2):104-104
由青海中浩天然气化工有限公司投资15.7亿元建设的年产60×10^4t甲醇项目主装置区建设已经开工.整个项目将于2009年10月建成投产,为大规模利用柴达木盆地丰富的天然气资源奠定了基础。随着该项目的建成投产,加上格尔木炼油厂已有的40×10^4t甲醇年生产能力,届时,格尔木将拥有100×10^4t甲醇年生产能力,柴达木盆地丰富的天然气资源将会转化为可观的经济效益。  相似文献   

13.
炼化企业在催化裂化加工过程中会生产大量的C3馏分,主要成分是丙烯和丙烷。其中丙烯是重要的石油化工基础原料,而丙烷主要作为民用液化气使用,附加值低,造成巨大资源浪费。利用催化脱氢技术,将低附加值的丙烷转化为市场紧缺的丙烯,具有重大的经济效益和社会效益。丙烷脱氢制丙烯技术进料单一,产品单一(主要是丙烯),副产物为氢气,丙烯收率高,是继裂解制乙烯联产丙烯和催化裂化制丙烯之后的第三大丙烯生产路线。介绍了国内外丙烷脱氢制丙烯发展情况,对比了当前丙烷脱氢制丙烯的两大工艺技术——Oleflex工艺和Catofin工艺,表明Oleflex工艺在工艺过程、催化剂组成及活性稳定性、投资等方面具有较大优势。结合洛阳石化1800×104t/a炼油扩能改造工程项目计划和装置特点,对丙烷脱氢制丙烯进行经济分析,提出增上20×104t/a丙烷脱氢制丙烯装置的建议,可消化周边丙烷资源,减轻液化气销售压力,有助于稳定液化气市场,实现丙烷供需双赢。  相似文献   

14.
刘国胜  谢涛 《中外能源》2009,14(6):82-86
介绍了筒式外循环、膨胀床、混相床等炼油型MTBE常规工艺流程及特点。分析了反应温度、转化率、催化剂活性、原料等因素对工艺路线选择的影响。确定的工艺线路为:成熟的固定床筒式反应器加外循环冷却取热、深度转化合成MTBE组合工艺技术。改造后,装置产能由3.36×10^4t/a提高到6.7×10^4t/a,异丁烯转化率提高到98%左右,装置平均能耗从2007年的135.90kg标油/t原料下降至95.10kg标油/t原料,装置操作弹性增大。  相似文献   

15.
某单位制氢装置于2004年由3×10^4t/a甲醇装置改建而成,以天然气或乙烯裂解出甲烷富气为原料,采用烃类蒸汽转化、等温变换、变压吸附技术,氢气产量1.5×10^4m^3/h,外供炼油厂加氢裂化装置。为防止转化催化剂和中变催化剂(铜系)中毒,在原料预热段设有脱硫槽和脱氯槽,保证转化气净化度。  相似文献   

16.
山西沁水煤层气生产30×10^4t/a二甲醚项目工艺设计   总被引:2,自引:0,他引:2  
介绍了山西沁水利用煤层气经三一段纯氧转化制甲醇再生产30×10^4t/a二甲醚项目的概况。重点介绍了该项目采用的我国最近开发的煤层气三一段纯氧转化制甲醇创新工艺,采用该工艺同量原料比传统一段转化工艺可增产35%,减排CO285%-90%,生产1t二甲醚的煤层气消耗量仅为1082m3。项目设计推荐购买美国GGG厂大型甲醇闲置设备进行改造的方案。经测算,采用以上方案建设这样一个项目,投资为6.2亿元,可创产值12亿元(以每吨二甲醚4000元计),年利税5.84亿元,投资回收期约为1年。  相似文献   

17.
据低碳能源情景预测,我国2050年能源总消费量为78×10~8t(标煤),则CO_2排放量将由2008年的71.25×10~8t增加到136.5×10~8t。煤炭需求量为27.5×10~8t,CO_2排放量约为70×10~8t。我国现有燃煤发电4×10~8~5×10~8k W,年用煤炭约14×10~8~17.5×10~8t,集中排放CO_228×10~8~35×10~8t。常规煤燃烧释放出大量污染物造成酸雨、使气候变暖,形成各种严重的自然灾害。燃煤发电的碳利用率为零。建议研究开发煤气化发电与电解水储电、CO_2综合利用系统技术,从根本上解决我国煤炭清洁利用的问题。该系统选用粉煤纯氧高温高压气化制合成气发电,碳转化率达到99%,免去燃煤锅炉发电产生SO_2、NOx和粉尘所需要的高投资高成本的处理费用。煤气化制得的合成气,部分经水电解分离,负极出H_2,正极出21%O_2+79%CO_2代替空气用于气轮机燃烧发电,排出高温纯CO_2尾气入废锅产高压蒸汽发电后,经冷却、节流,膨胀成雪花状CO_2压榨成干冰作化肥,供植物作养分,实现碳循环资源化利用。  相似文献   

18.
新型二甲醚-发电多功能系统的设计与分析   总被引:1,自引:0,他引:1  
由于从偏远地区长距离输送天然气的成本较高,将天然气就地转化为高附加值且易运输的化工产品,比如甲醇、二甲醚等,是西部天然气资源利用的重要途径之一.论文以天然气空气部分氧化制合成气与二甲醚合成工艺为基础,针对合成尾气不同利用方式,提出二甲醚单产工艺和二甲醚/动力联产工艺.与单产二甲醚的工艺相比,联产系统的相对节能率为8.94%.文中还探讨了合成气的氢碳比对于联产系统性能的影响.图8表1参13  相似文献   

19.
制氢装置于2004年由3×10^4t/a甲醇装置改建而来。以天然气或乙烯裂解甲烷富气为原料,采用烃类蒸汽转化、等温变换、变压吸附技术,每小时氢气产量1.5×10^4m^3。外供炼油厂的加氢裂化装置。为防止转化催化剂和中变催化剂(铜系)中毒,在原料预热段设有脱硫槽和脱氯槽,保证转化气净化度。该装置采用优化换热技术。利用烟道气和转化气的高温余热产生中压蒸汽,并利用等温变换反应换热并增加蒸汽。经过甲烷蒸汽转化和等温变换后的中变气进入中变冷却分离系统。在冷却分离过程中产生冷凝水,技术指标要求水中除微量CO2外,  相似文献   

20.
李焱 《中外能源》2014,(5):81-85
针状焦是20世纪70年代大力发展的优质碳素原料,由其制成的超高功率(UHP)石墨电极可大幅提高冶金工业效率,降低消耗,减少环境污染。研究发现,炼厂油浆是生产针状焦的优质原料。目前,国外普遍采用低硫减压渣油和催化裂化澄清油为原料,共碳化生产针状焦,技术成熟。国内相关技术研发起步较晚,但发展较快。2006年,锦州石化采用石科院自主开发的第二代油系针状焦生产技术,对原装置进行技术改造,生产针状焦4×104t/a左右,可满足UHP石墨电极生产的需要。2012年,山东临沂沂河石化有限公司20×104t/a油系针状焦装置动工,采用中国石油大学超临界萃取分离技术预处理油浆,该项目配套有芳构化装置,预计将于2014年7月投产。对该项目原料市场分析表明,目前国内催化裂化澄清油或油浆、甲醇、液化气等资源充足,供应不存在问题。产品市场方面,由于生产不稳定,目前针状焦实际产量不到20×104t/a,而消费量达到27.29×104t/a,有8×104t/a的缺口;同时,副产的芳烃市场前景较为乐观。根据项目投资估算和经济分析,设计项目内容为40×104t/a原料油浆,生产约20×104t/a针状焦,同时配套相应装置,总投资约6.6亿元,可以实现税后利润5.8亿元/a,投资回收期为2.1a。项目具有工艺技术成熟、原料易得、产品市场前景乐观、效益显著的特点,不仅可以解决国内针状焦资源缺口问题,也是炼厂解决油浆出路的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号