首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以V_2O_5浓度为17.85 g·L~(-1)的模拟一步法石煤提钒反萃液为研究对象。以沉钒产品纯度及其中杂质离子存在状态、杂质离子存在时多聚钒酸铵(APV)晶体状况为指标,讨论了模拟反萃液中的Fe~(3+),Al~(3+),Ca~(2+),K~+等金属杂质离子对酸性铵盐沉钒效果的影响。研究结果表明:Fe~(3+),Al~(3+)妨碍沉钒过程的顺利进行且会降低产品V_2O_5的纯度,并造成沉钒母液的p H值改变,增加后续母液处理的成本和难度;而Ca~(2+),K~+仅会影响产品V_2O_5的纯度,对沉钒率和母液p H值的影响并不显著;4种杂质离子均会使产品多聚钒酸铵(APV)的晶体形貌发生改变,但是每种杂质改变APV晶体形貌的方式各异:Fe~(3+)会破坏APV晶体的完整性并改变其晶体颗粒大小,K~+破坏APV晶体的完整性;Ca~(2+)使APV晶体表面粗糙,晶体颗粒之间黏连,形成大块颗粒;Al~(3+)形成的杂多酸的非晶体状态阻碍APV晶体的顺利长大。同时得到了反萃液沉钒指标良好时,4种杂质离子浓度的控制范围:Fe~(3+)浓度应0.1 g·L~(-1),Ca~(2+)浓度应0.9 g·L~(-1),K~+浓度应2.0 g·L~(-1),Al~(3+)浓度应3.0 g·L~(-1).  相似文献   

2.
刘东  薛向欣  杨合 《钢铁钒钛》2019,40(3):13-20
目前,钒渣经钠化焙烧—水浸后用于提钒的钒液浓度不高,会产生大量的含V~(5+),Cr~(6+),NH_4~+,SO_4~(2-),Na~+等有毒废液,使得后处理成本增加,加大了环境污染的风险。以普通钒液为研究对象,通过提高钒液中钒的浓度来研究高浓度钒液酸性铵盐沉钒的可行性,同时考察了加铵系数K,一次加酸pH_1,沉钒温度T,和二次加酸pH_2对高浓度钒液中钒的回收率及产品品位的影响,采用X射线荧光分析(XRF)和原子发射光谱仪(ICP)分析了提钒前后钒液中钒浓度、产品品位以及产品中杂质的含量。研究结果表明:高浓度钒液制备五氧化二钒是可行的,当钒液浓度为60 g/L,加铵系数K为2,一次加酸pH_1为5.0,沉钒温度T为90℃,二次加酸pH_2为2.0,钒的回收率最高,可达99.83%,经处理后的产品五氧化二钒的纯度为99.99%,符合V_2O_599级标准(YB/T5304—2011)。为工业化低污染、高效处理钒液提供了研究基础。  相似文献   

3.
姜德强 《湖南有色金属》2013,29(2):34-35,70
在碱性条件下,通过改变铵盐加入量,获得不同的沉钒率;煅烧沉钒产品,得到不同的烧得率。试验的沉钒率达到99%以上,所得偏钒酸铵水分含量低、烧得率稳定在73%以上,煅烧产品质量达到国家相关标准。调整生产过程中氯化铵加入量,获得优良指标,降低了生产成本。  相似文献   

4.
通过对江西某石煤提钒沉钒母液的性质分析,系统考察了沉钒母液的循环利用对反萃现象、反萃剂H~+浓度、V的反萃率、V2O_5产品质量等影响,确定了该沉钒母液的循环利用方式。研究表明:沉钒母液中含有高浓度的Al,SO_4~(2-),NH~+_4等离子,不经处理直接返回提钒工艺的反萃阶段,会析出NH_4Al(SO_4)_2·12H_2O晶体,给原有提钒工艺带来反萃率下降、反萃现象异常等不利影响;采用石灰乳中和法调节沉钒母液的p H值至10,固液分离后将处理液中加入硫酸配制成8%稀H_2SO_4溶液,作为反萃剂返回提钒作业,可实现沉钒母液的循环利用;在沉钒母液循环利用的过程中反萃现象正常,反萃剂的H~+浓度在2.75~2.85 mol·L~(-1)波动,V的反萃率维持在99.2%~99.3%波动,V2O_5产品质量均可达到GB3283-1987(V2O_5-98)的标准。  相似文献   

5.
提高酸性铵盐沉钒效果的研究   总被引:1,自引:1,他引:0  
以江西某地含钒石煤经焙烧-水浸-离子交换所得的富钒液为对象, 研究了加酸加铵方式、添加晶种以及产品洗涤方式对酸性铵盐沉钒制备多聚钒酸铵(APV)的影响. 结果表明: 冷态下采用2次加酸1次加铵、加铵pH值为5左右的方式沉钒有助于提高沉钒效果, V_2O_5纯度可达99%以上; 低浓度含钒溶液沉钒时, 按其生成APV质量的1/200加入晶种破坏溶液过饱和度, 可将沉钒时间缩短25%; 得到的沉淀物经液固比为40∶ 1的自来水洗涤, 能将APV中Na~+, K~+含量降至0.24%, 且钒损失率仅为0.2%.  相似文献   

6.
以钒渣钠化焙烧工艺得到的碱性钒浸出液为原料,在除去主要杂质硅和磷后,通过添加硫酸钠和三氧化铬,配制成一定组分的钒铬溶液,采用典型的酸性铵盐沉钒工艺,考察了溶液中钠、铬、钒含量以及加铵系数对沉钒率及最终V_2O_5中Na_2O含量的影响。结果表明:钒铬溶液在一定的浓度范围内可以采用酸性铵盐沉钒工艺,并取得较好效果。在满足高沉钒率及V_2O_5产品质量合格的前提下,溶液中钠的最大允许浓度为c(Na)/c(V)=2.4;在c(Na)/c(V)=1.8时,随着溶液钒浓度的增加,铬的最大允许浓度发生变化,表现为c(Cr)/c(V)逐步减小;对c(V)=25 g/L、c(Na)=45 g/L、c(Cr)=24 g/L的溶液浓缩后进行沉钒,通过降低浸出液固比提高钒浓度,钒的最大允许浓度为26 g/L;当加铵系数在1.5以上时,获得的V_2O_5产品满足相关质量要求;溶液离子浓度及加铵系数对沉钒率的影响很小。  相似文献   

7.
石煤提钒   总被引:7,自引:0,他引:7  
符迈群 《钒钛》1992,(5):12-14,8
  相似文献   

8.
陈自清 《钢铁钒钛》2012,33(3):11-15
针对酸性铵盐沉钒生产过程,优化了工艺参数和控制手段,为生产高品位的V2O3提供优质的原料。主要讨论了含钒浸出液浓度、铵盐加入量、沉钒温度、反应时间、pH值、搅拌条件及板框压滤过程中洗涤条件等因素对酸性铵盐沉钒法制备的多聚钒酸铵(APV)质量的影响。结果表明:含钒浸出液钒浓度为25~35 g/L,采用两次加酸工艺,沉淀终点温度95℃,沉淀反应时间约35 min,APV滤饼洗涤时间20 min,洗涤水温度在75℃左右,压榨吹风时间80 min,风压≥0.5 MPa,滤饼厚度≤25 mm等工艺条件下,可降低沉淀产物多聚钒酸铵的杂质含量,从而提高产品质量。  相似文献   

9.
石煤提钒新工艺研究   总被引:3,自引:0,他引:3  
对石煤提钒进行了研究,提出了稀酸常温浸出,901树脂离子交换等新工艺流程,并对实验结果进行了分析讨论。该工艺与传统工艺相比,可有效地提高V2O5的回收率,降低产品生产成本25%左右,生产操作简单,产品质量稳定,并已在工业生产中推广应用。  相似文献   

10.
张玲 《有色矿冶》2023,(1):48-51+34
硫酸生产过程中产生的废钒触媒,采用酸性铵盐沉钒工艺处理,工艺条件易于掌握,所消耗材料品种少,设备腐蚀性小,钒的回收率较高,技术经济指标合理。回收的五氧化二钒产品符合国家产品质量标准的要求,而且生产成本低可获得较好的经济效益。生产过程中产生的固体残渣制成水淬渣,作为水泥配料外售,气体和液体废弃物可以进行回收利用,整个生产过程不会对环境产生污染,同时降低危险固废储存过程潜在风险,环境效益显著。  相似文献   

11.
石煤焙烧物料提钒的试验研究   总被引:2,自引:0,他引:2  
以石煤脱碳焙烧利用热值后的物料为研究对象。采用"硫酸+助浸剂浸出,浸出液经回调pH值及还原处理后萃取和反萃取,反萃取液氧化后经酸性铵盐沉钒等"工艺制取五氧化二钒。工艺参数:在物料粒径小于37μm(100%)、硫酸用量为50%、助浸剂用量为4%、液固比为2.5∶1、浸出温度为90℃、浸出时间为7 h等条件下浸出,在12.5%P204+5%TBP+82.5%磺化煤油为有机相、水相pH值为2、相比为2∶1、三级逆流萃取、1.5 mol.L-1硫酸三级逆流反萃取等条件下萃取和反萃取。结果表明:浸出过程经动力学分析,表观活化能为46.26kJ.mol-1,属于化学反应控制过程;钒总回收率达75%以上;V2O5产品纯度大于99%,符合GB3283-1987质量要求;全流程几乎无废气外排,废水经处理后循环使用率达97%以上,废渣可用于建材,属于清洁型提钒工艺。  相似文献   

12.
为解决石煤焙砂缓慢冷却过程中因发生二次反应生成难溶性钒青铜的问题,提出了高温焙砂出炉后直接高温水浸钒。通过单因素试验和正交试验,考察了各因素对钒浸出率的影响,确定了高温水浸最佳工艺参数:浸出时间9h,液固体积质量比2mL/1g,焙砂温度650℃。在此条件下,钒浸出率可达89%。该方法在一定程度上减少了不溶性钒青铜的生成,提高了钒浸出率,而且有效利用了高温焙砂的热量。  相似文献   

13.
含钒石煤微波焙烧提钒试验研究   总被引:1,自引:3,他引:1       下载免费PDF全文
以某含钒石煤为原料进行微波焙烧提钒研究,并与常规焙烧提钒进行对比,主要考察微波焙烧温度、微波焙烧时间、硫酸体积浓度、浸出时间、液固比、浸出温度对钒浸出率的影响。结果表明,在微波焙烧温度550℃、焙烧时间20min、硫酸体积浓度15%、浸出时间6h、液固比1.5∶1(mL/g)、浸出温度95℃的条件下,钒浸出率为86.64%,在相同浸出条件下,常规马弗炉700℃焙烧1h钒的浸出率为84.22%。微波焙烧相对常规焙烧能在更低温度、更短时间内达到相同的提钒效果。  相似文献   

14.
为解决钠化钒液采用酸性铵盐工艺沉淀多钒酸铵产品中杂质含量较高的问题,进行了多聚钒酸铵中杂质分离技术研究与杂质溶解动力学分析。试验结果表明:采用热水浸泡洗涤工艺,控制洗涤剂pH为5~7、洗涤温度为50~70℃、液固比为(1.5~2.0)∶1、铵盐加入量为1%~2%,钒收率达到99.60%以上,多钒酸铵中TV含量为50.25%,Na_2O+K_2O为0.15%,S为0.13%。经杂质溶解动力学分析,表观活化能为16.19 kJ/mol,杂质分离过程为固膜扩散动力学过程控制。  相似文献   

15.
石煤钒矿提钒新工艺研究   总被引:2,自引:0,他引:2  
硫酸化焙烧-水浸提取石煤钒矿中钒的工艺是可行的,且工艺的适应性强、简单,易于产业化,是一种新的提钒技术。石煤钒矿硫酸化焙烧合适工艺技术为硫酸配入量35%、焙烧温度300℃和焙烧时间0.5h,钒的浸出率〉92%。  相似文献   

16.
王英 《钢铁钒钛》2012,33(3):20-23
根据酸性铵盐沉钒废水的特性,提出其在沉淀设备冲淋、尾渣洗涤和熟料浸出三个方面进行循环利用的途径,并开展相关试验。结果表明:APV在pH值为2.5~3.5的水溶液中溶解的V浓度低于0.15 g/L,利用酸性铵盐沉钒废水作沉淀设备冲淋水能有效解决APV返溶问题,从而减少钒损失。当洗涤温度大于90℃,液固比超过2.5,洗涤时间达到45 min以上,洗涤次数超过3次时,使用酸性铵盐沉钒废水洗涤尾渣的效果优于生产水。用沉钒废水浸出焙烧熟料是完全可行的,其浸出液具有除磷优势。  相似文献   

17.
本文综述了钒生产、市场及石煤提钒,分析了当前世界饥市场及五氧化二钒价格变化的形势。  相似文献   

18.
石煤湿法提钒新工艺研究   总被引:5,自引:0,他引:5  
以西南某石煤矿为原料,采用石煤中加入氧化剂和硫酸加热浸出,浸出液经P2O4萃取后水解沉钒工艺。研究结果表明,钒总回收率达68%以上,产品V2O5纯度达到国标99级以上。该方法与传统焙烧法提钒相比,具有无焙烧废气污染,产品质量高,污染少等优点。  相似文献   

19.
针对目前含钒石煤焙烧效果差、钒浸出率低以及欠缺相关焙烧理论研究等问题,本文以湖北某地石煤原矿为对象,研究了石煤活化焙烧提钒过程中活化剂种类、用量、焙烧温度及时间对浸出率的影响,同时对石煤焙烧料进行X射线衍射、扫描电镜以及热力学分析。试验结果表明活化剂种类不同,石煤焙烧效果差别较大,其中添加硫酸钾焙烧对提高钒水浸率效果最为显著,同时焙烧温度和时间也是影响焙烧效果的主要因素;石煤在焙烧温度为950℃、时间为60 min及添加4%氯化钠和8%硫酸钾的条件下,钒水浸率为55.24%、总浸出率为70.02%;X射线衍射分析表明石煤通过添加硫酸钾活化焙烧,焙烧熟样中易生成钾钠长石和硬石膏,其抑制了钙长石的形成同时促进了水溶性钒酸盐的生成,从而提高了相应钒的水浸率;热力学分析表明石煤添加硫酸钾焙烧,焙烧熟样中硫酸钙的反应吉布斯自由能低于钙长石等矿物,同时钒酸三钠的生成吉布斯自由能亦小于其他种类钒酸盐。  相似文献   

20.
pH值和温度对酸性铵盐沉钒影响研究   总被引:2,自引:0,他引:2  
利用钒渣钠化焙烧-水浸工艺得到的钒浸出液为原料,进行了酸性铵盐沉钒试验、多钒酸按溶解度测定试验和x射线衍射表征,研究了温度为75~95℃和pH值为2.0~5.0范围内,温度和反应终点pH值对酸性铵盐沉钒沉钒的影响.研究结果表明:随着pH值的降低和沉淀温度的升高,沉淀产物晶体物相和杂质含量显著变化.pH值从5.0下降到2.0的过程中,沉淀产物中(NH4)4Na2V10O28·10H2O和(NH4)6V10O28·6H2O逐渐转化为NH4V3O8·O.5H2O,钒沉淀率显著上升,同时沉淀产物中钠、钾和硫含量显著降低;在pH值4.0~5.0范围内,随着温度的上升,沉淀产物由(NH4)4Na2V10O28·10H2O转化为(NH4)6V10O28·6H2O,钒沉淀率上升,同时沉淀物中钠和钾含量降低,所包裹的硫含量增加,沉淀温度为75℃时,沉淀产物主要为(NH4)4N2V10O28·10H2O,沉淀物中钾含量处于0.140%~0.161%之间,硫含量处于0.010%~0.017%之间;在pH 2.0~3.0范围内,沉淀产物主要为NH4V3O8·O.5H20,随着温度的上升,水解产生的多钒酸钠和多钒酸钾中的钠和钾被铵所取代生成NH4V3O8·O.5H20,沉淀产物中钠和钾含量降低,沉淀的最佳工艺条件为pH2.0~2.5,温度为95℃以上,反应2h后,钒沉淀率达99.38%以上,沉淀物中钠,钾和硫含量分别降低至0.300%,0.090%和0.039%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号